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ABSTRACT OF THESIS 

 

 

 

ESTIMATION OF ANNUAL AVERAGE DAILY  

TRAFFIC ON LOCAL ROADS IN KENTUCKY 

 

Annual average daily traffic (AADT) is used to estimate intersection performance across 

Kentucky. The Kentucky Transportation Cabinet (KYTC) currently collects AADTs for 

state maintained roads, but lacks this information on local roads. A method is needed to 

estimate local road AADTs in a cost-effective and reasonable manner.  A literature review 

was conducted on AADT models and found no models suitable to Kentucky. Therefore an 

AADT model using non-linear regression was developed for local roads in Kentucky 

 

This model divided the state into three regions utilizing Kentucky’s highway districts. This 

partitioning accounted for geographic and socioeconomic variability across the state. Each 

regional model relied upon three independent variables: probe count, residential vehicle 

registration, and curve rating. HERE proprietary probe counts provide tracking visibility 

on a select portion of vehicles moving across Kentucky highways. Residential vehicle 

registrations were used to estimate trip generation information. Finally, the curve rating 

partially indicates accessibility.  

 

The models were adjusted to KYTC daily vehicle miles traveled (DVMT) county control 

totals for local roads. Sensitivity analysis was conducted to examine the impact of model 

errors for use in intersection safety analysis.  Results indicate that the estimates generated 

can be effectively used for safety assessment and countermeasure prioritization. 
 

Key Words: Local Road, AADT, Estimating, Modeling 
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CHAPTER 1: BACKGROUND 

 

1.1 INTRODUCTION 

 

Annual average daily traffic (AADT) provide transportation planners and safety engineers 

with critical roadway information to estimate performance, but limitations in data 

collection have left much of Kentucky’s highway network unevaluated. The Federal 

Highway Administration (FHWA) defines AADT as the “total volume of vehicle traffic of 

a highway or road for a year divided by 365 days” (1). Transportation planners and policy 

decision-makers rely heavily on AADT metrics to assess highway performance and guide 

their future planning and funding decisions. For instance, AADT assists in the calculation 

of vehicle miles travelled (VMT) which, in turn, establishes the basis for distributing 

highway funds related to maintenance and safety. Furthermore, AADT serves as the 

framework for estimating other transportation planning factors including crash rate 

predictions, vehicle emissions, and forecasting future travel demand. For these reasons, 

state department of transportation (DOT) planners and other affected stakeholders often 

take great efforts to collect and utilize this data. 

 

Through its Traffic Monitoring System, the Kentucky Transportation Cabinet (KYTC) 

collects highway traffic data to develop AADTs on all state-maintained roads and local 

roads functionally classified as Collector or above. This generally involves segmenting the 

entire roadway system and using Automatic Data Recorders (ADRs) placed in each 

segment to collect data for a minimum of 48 hours every three years. Factors are derived 

from sites that collect data continuously – Automatic Traffic Recorders (ATRs) – and used 

to annualize these short duration counts into AADTs.    

 

Currently, Kentucky has significant gaps in collecting traffic data across its non-state 

maintained transportation network. The collection of traffic data to develop AADTs on 

non-state roads—also referred to as local roads—is optional for county and city agencies. 

Metropolitan Planning Organizations (MPOs) and Area Development Districts (ADDs) 

may also collect data.  These agencies may also employ the use of ADR equipment to 

determine their respective AADT. However, many local agencies struggle in their traffic 

data collection efforts due to their limited fiscal resources, labor shortages, and in some 

cases, the lack of expertise and/or political will. For these reasons, AADT across many of 

these local roads remains unknown. To date, KYTC has obtained AADT for approximately 

1,200 miles of local roadways across the entire state. This study will hereafter refer to 

KYTC-provided AADT as “known” AADT, subsequently used to develop and validate the 

AADT models. This represents only 2 percent of the state’s 52,000 miles of local roadways. 

Consequently, approximately 98 percent of the local roadways in Kentucky currently lack 

AADT thereby posing planning and funding challenges to highway officials.  

 

1.2 PROBLEM STATEMENT 

 

KYTC and other highway agencies rely heavily on the use of AADT in safety analysis. 

This research provides a method of estimating AADTs and supports KYTC’s ability to 

plan and prioritize safety mitigations.   
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1.3 OBJECTIVES 

 

This report describes the development of a model to estimate AADT for local roads in 

Kentucky. To achieve this objective, the following tasks were completed:  

a. Research available AADT transportation models in use or previously developed by 

other state DOTs, universities, or other research organizations, and determine 

capabilities, requirements, and accuracy of selected models  

b. Select an AADT transportation model that can be successfully applied to 

Kentucky’s local roadway network 

c. Revise and adjust model to fit the data available for Kentucky and produce relevant, 

accurate, and precise model outputs 

d. Validate and calibrate developed model using known local roadway data  
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 AADT METHODOLOGIES 

 

Various methodologies were investigated that have been used across the United States to 

estimate AADTs. Several methodologies were selected based upon a wide range of peer-

reviewed scientific articles published by practitioners and researchers within the 

transportation planning community. This comprehensive approach to AADT estimation 

provided a rigorous overview of best practices currently being used as well as those 

methods which may be best suited to Kentucky’s roadway network. Academic universities 

and state DOTs developed the majority of the methods described in this section. In Table 

1 below, AADT methodologies, corresponding sources, and facilities of interest are shown. 

 

Table 1: AADT Methodologies 

Methodology Source Facilities of Interest 

Ordinary Linear regression 

Pan (2) All roads in Florida 

Shen et al. (3) Off-system roads in Florida 

Zhao and Chung (4) County roads in Florida 

Lowry and Dixon (5) Streets in an urban area 

Mohammad et al. (6) County roads in Indiana 

Geographically weighted 

regression 
Zhao and Park (7) County roads 

Kriging interpolation 

Selby and Kockelman 

(8) 
All roads in Texas 

Eom et al. (9) 
Non-freeway roads in a 

county 

Shamo et al. (10) Roadways with ATR data 

Wang and Kockelman 

(11) 
All roads in Texas 

 Artificial Neural Network Sharma et al. (12) Rural roads 

Travel demand modeling 

Wang et al. (13) All roads in Florida 

Wang (14) All roads in Florida 

Zhong and Hanson (15) Low-class roads 

Origin-Destination centrality 

based Method 
Lowry (16) Community roads 

Florida Turnpike state model Florida DOT (17, 18) Roads without traffic counts 
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The following sections provide brief descriptions of each methodology. This discussion 

includes an outline of the modeling equations, data input requirements, and an examination 

of select source models. 

 

2.1.1 ORDINARY LINEAR REGRESSION MODEL 

 

Ordinary linear regression (OLR) identifies the statistical relationship that exists between 

a dependent variable and one or more independent variables. In this case, OLR describes 

the relationship between AADT and its explanatory factors. OLR minimizes the sum of 

errors between estimated values and known values. The equation is as follows: 

 

 𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑖𝑥𝑖 + 𝜀  

 

Where 

 Y is the dependent variable 

   𝑥𝑖 are the selected explanatory variables 

   𝛽𝑖 are the coefficients estimated from the model 

 𝜀 is the random error term 

 

The literature review indicated OLR is the most frequently used method to estimate AADT 

due to its proven ability to assess relationships in multiple situations while maintaining 

simplicity and ease of use.  

 

In one study, Mohamad et al. applied OLR to estimate AADT for county roads in Indiana 

(Error! Bookmark not defined.). The study’s authors collected standard 48-hour traffic 

ounts across 40 counties from February through August in 1996. These traffic counts were 

used to determine AADTs along the selected county roads. The final regression model 

included four explanatory variables (down from the 11 the researchers began with). The 

final OLR model equation was: 

 

 𝐿𝑜𝑔10(𝐴𝐴𝐷𝑇) = 4.82 + 0.81𝑋1 + 0.84𝑋2 + 0.24𝐿𝑜𝑔(𝑋4)
− 0.46𝐿𝑜𝑔(𝑋10)   (𝑅2 = 0.751) 

 

 

Where  

 X1: 1 if urban, 0 if rural 

 X2: 1 if easy access or close to state highways, 0 otherwise 

 X4: county population 

 X10: total arterial mileage of a county 

  

Estimation errors ranged from 1.56 percent to 34.18 percent when the model’s estimated 

AADT output was compared with existing AADT data from eight selected counties. 

 

In another study, Shen et al. estimated AADTs for Florida “off-system” roadways lacking 

them (Error! Bookmark not defined.). The research authors developed various regression 

odels to assess different types of areas in Florida. In each model, AADT served as the 

dependent variable. The regression models examined included: 
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 Statewide model 

 Rural model 

 Small-medium urban model 

 Large metropolitan area model 

 

In particular, this “rural” based model incorporated data from eight counties. The final 

regression equation was: 

 

 ADT = 4853.49 + 0.12 Pop + 0.26 Labor - 18.93 Lanemile - 

0.0032338 Vehicles 
 

 

Where 

 Pop is a county’s total population; 

 Labor is a county’s total labor force; 

 Lanemile is the total lane miles of county roads in a county; 

 Vehicles is the number of automobiles registered in a county; 

 

Upon initial examination, this model seemed to show promise for assessing rural roads, a 

primary element of Kentucky’s local roadway network. However, the model’s coefficient 

of determination, or R-squared, was only 0.25. The R-squared value can be translated as 

the percentage of variance in “Y” (or ADT) that is explained by the dependent variables. 

This means the model only explained 25 percent of the ADT value using its explanatory 

variables. Consequently, the model’s overall usefulness is limited in estimating AADT 

values in Kentucky. 

 

Similarly, Zhao and Chung used regression modeling to assess various factors and their 

ability to estimate AADTs (Error! Bookmark not defined.). The researchers examined 

our unique regression models to estimate AADTs in Broward County, Florida. This yielded 

the following regression equations: 

 

Model 1: AADT = -9.520386 + 8.480001 FCLASS + 3.428939 LANE + 0.596752 

REACCESS + 2.991573 DIRECTAC + 0.069086 EMPBUFF  

 

Model 2: AADT = -6.15742 + 6.55471 LANE + 0.61433 REACCESS + 7.88344 

DIRECTAC – 0.34494 DPOPCNTR  

 

Model 3: AADT = -4.66034 + 4.95341 LANE + 0.51119 REACCESS + 4.52713 

DIRECTAC – 0.10689 DPOPCNTR + 0.00112 POPBUFF  

 

Model 4: AADT = -4.26565 + 4.86271 LANE + 0.47286 REACCESS + 4.34780 

DIRECTAC – 0.10197 DPOPCNTR + 0.00104 POPBUFF + 

0.00022820 EMPBUFF  
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Where 

 FCLASS is functional classification of roadway 

 LANE is the number of lanes in both directions 

 REACCESS is the access to regional employment  

 DIRECTAC is direct access (or connection) to an expressway  

 EMPBUFF is the number of people employed along a roadway segment 

 DPOPCNTR is the distance to a population center 

 POPBUFF is the number of people living along a roadway segment 

 

These regression models produced R-squared values ranging from 0.66 to 0.82, a 

significantly higher precision over other regression models.  In addition, these models 

examined a larger set of variables than regression models developed by other researchers, 

thus leading to a more comprehensive approach in determining AADT. For these reasons, 

these regression models exhibited the greatest initial promise for inclusion into a Kentucky-

based model, therefore the variables used in these regression models were selected for 

further study and analysis.  

 

2.1.2 GEOGRAPHICALLY WEIGHTED REGRESSION MODEL 

 

Geographically weighted regression (GWR) models account for transportation network 

spatial variation. Unlike OLR models, GWR generates equations locally for each 

observation. For this reason, a GWR model is generally considered more capable in 

accurately estimating results than comparable OLR models. The basic equation is as 

follows:   

 

 𝑌𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + 𝛽1(𝑢𝑖, 𝑣𝑖)𝑥𝑖1 + 𝛽2(𝑢𝑖, 𝑣𝑖)𝑥𝑖2 + ⋯ + 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

+ 𝜀𝑖 
 

 

Where 

 𝑌𝑖 is the AADT 

 𝑖 is the ith observation 

   𝛽𝑘(𝑢𝑖, 𝑣𝑖) is the coefficient of local model to be estimated 

   𝑥𝑖𝑘 is the kth variable from ith observation 

 𝜀𝑖 is the random (model) error 

 

The GWR model examines each observation and then selects those observations found in 

close proximity to a selected geospatial area for further consideration. In those instances, 

the model estimates the coefficient using a weighted factor which, in turn, relies upon a 

weighting function for its calculation. Simply put, locations found closer to the roadway of 

interest will receive higher weighted values on their explanatory factors. This is because 

those nearby areas are considered to have proportionately larger impacts on the travel 

demands of the geographical area of interest.  

 

Zhao and Park applied this concept to develop two distinct GWR models used in estimating 

AADTs and utilized data from Zhao and Chung’s OLR model (4). While more difficult to 
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implement, both GWR models showed improvements in performance over the previous 

OLR model, with higher R-squared values and smaller estimation errors.  

 

2.1.3 KRIGING INTERPOLATION MODEL 

 

The Kriging model uses spatial interpolation to estimate unknown values at locations or 

points based on known values at nearby locations or points (19). This method assumes that 

observations are spatially correlated.  It subsequently generates a function based on this 

spatial relationship. In this manner, Kriging generates a prediction surface from existing 

points to estimate values of a parameter at unknown locations. The model equation is as 

follows: 

 

 

 �̂�(𝑆0) = ∑ 𝜆𝑖

𝑛

𝑖=1

𝑍(𝑆𝑖)  

 

Where  

 �̂�(𝑆0) is the value to be estimated 

   𝑆0 is the location to be estimated 

 𝑍(𝑆𝑖) is the measured value at location i 

   𝜆𝑖 is the weight assigned to the value at measured location i  

 n is the number of measured locations included in the calculation 

 

To use the model, a semivariogram that reflects the spatial relationship between data points 

must be created. Several mathematical functions assist in identifying spatial relationships, 

including exponential, spherical, and Gaussian, among others. Next, the weights for 

measured locations to estimate values at unknown locations are derived from the 

semivariogram.  

 

Selby and Kockelman applied the Kriging method to estimate AADTs for Texas roadways 

lacking them (Error! Bookmark not defined.). In this study, the following source data 

erved as the initial input into this analysis: 

 

 Existing traffic counts from ATRs across different functional classifications in 

Texas (including large metropolitan and local rural areas) 

 Roadway network  

 Block-level census data 

 Employment data 

 

Based upon these input data, the authors incorporated the following variables to refine the 

model: 

 

 2005 AADTs 

 Speed limits 

 Lanes 

 Persons/Acre 



www.manaraa.com

 

8 
 

 Jobs/Sq Mile 

 Rural Interstate 

 Rural Major road 

 Urban Interstate 

 Urban Principal Arterial 

 Local/collector road 

 

In general, the model reduced estimation errors commonly associated with conventional 

OLR models. However, the model's estimation errors often increased when applied to low-

volume roads. For this reason, the model’s limitations make it less useful in estimating 

unknown AADT on local roads across Kentucky, many of which are rural.  

 

2.1.4 ARTIFICIAL NEURAL NETWORK 

 

Artificial neural networks (ANN) encompass a consortium of neuron-based models and 

have been widely used across a number of transportation studies. ANN models have a 

pronounced advantage in modeling nonlinear relationships due to their rapid adaptive 

capabilities in responding to data input characteristics. Unlike many of the other models, 

ANN models are not defined by a specific mathematical equation. Instead, they share the 

common trait of using neurons to capture and learn relationships between inputs and 

outputs. A wide array of unique neural networks has been developed for transportation 

research. The diversity of ANN technology provides a range of options for the 

transportation planner but must be balanced with limitations unique to its development, 

such as the need for large sets of data. 

 

In Canada, Sharma et al. adopted a multilayered, forward-feeding, and back-propagating 

neural network to estimate AADTs on low-volume roads inside a chosen province (Error! 

ookmark not defined.). Researchers used samples of hourly volume and AADT data 

obtained from 55 ATR sites to train the neural network. The model yielded an approximate 

25 percent error at the 95th confidence interval. As one would expect, increased counts over 

multiple time periods improved the model’s performance, as evidenced by the lower errors 

associated with a second model simulation which used two 48-hour counts over two 

months.  

 

2.1.5 TRAVEL DEMAND MODELING  

 

Travel demand models estimate travel patterns and demand over time based on select, 

independent variables. Many state DOTs, metropolitan planning organizations, and other 

transportation planning organizations use these models to predict future traffic patterns and 

volumes in their areas. Using this approach, Wang et al. developed a four-step, parcel-level 

travel demand model to estimate AADTs on local roads within a select county in Florida 

(Error! Bookmark not defined.). The four main steps used to construct this model 

ncluded the following: 
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1. Network Modeling: The network model was developed using original and 

processed data from a range of sources. Centroids and centroid connectors were 

placed in each parcel to provide access to adjacent roads. 

2. Trip Generation: The model used regression equations from the Institute of 

Transportation Engineers (ITE) Trip Generation manual to estimate trips generated 

(20). Land-use types corresponding to each parcel in the model area informed the 

regression equation selection process. 

3. Trip Distribution: The model distributed trips through the gravity model method. 

This method distributes trips produced in one zone to other zones in the model (21). 

The model assumed each parcel only produced trips but did not attract trips in 

relation to other parcels.  

4. Trip Assignment: Each vehicle traveling on local roads within the model area 

received trip assignments prescribing the chosen travel path. The model assumed 

travelers would choose paths that minimized free-flow travel times.   

 

The model utilized ArcGIS and Cube. The final model's results compared favorably with 

known AADTs extracted from short-term traffic counts. The model generated mean 

absolute errors of 52 percent, considerably lower than the 211 percent from the Zhao and 

Chung OLR model. 

 

2.1.6 ORIGIN-DESTINATION (OD) CENTRALITY-BASED METHOD 

 

Typical origin-destination models attempt to predict travel behavior with respect to a 

vehicle’s starting point (origin) and end point (destination). Lowry built upon this 

conventional method by incorporating the concept of centrality into this framework 

(Error! Bookmark not defined.). The Lowry model spatially interpolated AADT for local 

treets found in the model area. It used the following equation to describe this relationship: 

 

 𝑂𝐷 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑒 = ∑ 𝜎𝑖𝑗(𝑒)𝑀𝑖𝑀𝑗

𝑖𝜖𝐼,𝑗𝜖𝐽

  

 

Where 

 i and j are origin and destination nodes 

 𝜎𝑖𝑗 is the shortest path from origin i to destination j 

   𝜎𝑖𝑗(𝑒) is equal to 1 if link e is on the path of 𝜎𝑖𝑗, and 0 otherwise 

   𝑀𝑖 and 𝑀𝑗 are the corresponding multipliers for origin i and destination j  

 

The model used multipliers for specific land-use types, as shown in the ITE Trip 

Generation manual. Furthermore, it calculated trip production and attraction rates in a 

manner similar to conventional travel demand models. The following inputs were required 

for this process:  

 

 The street network 

 The known AADTs 

 Land use parcels 
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 Boundary locations on the street network 

 

Lastly, this model calculated three different origin-destination (OD) centrality measures, 

including internal-internal OD centrality, internal-external OD centrality, and external-

external OD centrality. These measures are used as explanatory variables in accompanying 

OLR models. The Lowry model produced the highest R-squared values and lowest median 

absolute percent errors, respectively, in relation to the models evaluated for this literature 

review.  

 

2.1.7 FLORIDA TURNPIKE MODEL 

 

The Florida Department of Transportation uses a statewide transportation model — the 

FDOT Turnpike Model — to determine AADTs along its roadways. This model estimates 

AADT on all roads including local roads. The model uses the following data as inputs:   

 

 Statewide parcel shapefile 

 Known AADT data shapefile 

 Employment data from InfoUSA 

 Selection of Traffic Analysis Zones 

 HERE Street Network 

 

Once collected, the Turnpike Model divides the roadways found in the HERE street 

network into different tiers based on the roadway's functional levels (22). Next, the model 

assigns housing and employment units to routes. Housing and employment units (in terms 

of number of employees) are converted into trips generated. Finally, trips are assigned 

travel routes within the network. Transportation planners can then estimate AADTs based 

upon the model's predicted output. 

   

2.2 DISCUSSION AND RECOMMENDATION 

 

The Zhao and Chung OLR method was selected as the modeling approach for estimating 

local roadway AADT due to: availability of data, ability to replicate the process, and 

availability of resources (chiefly time). Specifically the explanatory variables found in this 

model were used to derive the first iteration of a Kentucky-based AADT model, hereafter 

referred to as the Broward County model. This model was selected for several reasons. 

First, it displayed positive results in estimating local roadway AADT within Broward 

County, Florida. Second, it was compatible with existing data accessible across various 

KYTC and county databases, thereby eliminating additional time and resource demands 

needed in data collection. Finally, the model achieved an optimal balance between roadway 

modeling accuracy, user friendliness, and resource requirements, to achieve the desired 

effect within reasonable demands (Error! Bookmark not defined.). Other models were 

xcluded from further analysis because they were either prone to excessive errors, had 

limited compatibility with Kentucky’s roadway network, or imposed too many resource 

(e.g., data and time) demands.  
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CHAPTER 3: AADT MODEL 

 

3.1 MODEL DEVELOPMENT 

 

Building upon the state of practice, six unique models were developed to estimate local 

roadway traffic volumes in Kentucky. Assessments were performed to judge each model’s 

capacity to produce reliable and accurate AADT estimates as well as its ability to use 

readily available data. The developed models included two variations on the original 

Broward County model (with and without Property Valuation Administrator (PVA) data), 

a Rooftop model, a 911 model, and two variations of an AVIS-HERE model (linear and 

non-linear regressions). Each model had specific advantages as well as limitations. 

Ultimately, the non-linear regression AVIS-HERE model was chosen as the final Kentucky 

model for estimating local road traffic counts based upon its accuracy, low error 

associations, and availability of data. Section 3.3 describes this model in detail. The other 

investigated models are described briefly below and in greater detail in Appendices A - E. 

 

Initially, the Broward County model required modification to align its explanatory 

variables with those most closely associated with Kentucky’s local roadway 

characteristics. This model was tested on data from Boyd, Clark, Franklin, Green, and 

Henry counties. However, the estimative attributes of this model were limited. A graph 

comparing estimated AADT with known AADT demonstrated the model’s high error rate. 

Thus, the model required additional modifications to improve its effectiveness. 

 

In an effort to enhance the Broward County model, another component was added to it —

PVA data. County governments routinely collect PVA data for residential and commercial 

properties within the county limits. PVA data may include information on property owners, 

sizes, and addresses, among others. PVA data were incorporated to determine the number 

and type of properties located along local roadways and analyze their potential impacts on 

AADT. This model demonstrated improvement over the original Broward County version, 

with reductions in the magnitude of errors corresponding to the deviation between known 

and estimated AADTs. Nonetheless, the errors still exceeded acceptable ranges (100 – 300 

percent), thereby excluding it from further consideration. 

 

Next, in an attempt to improve the identification of properties located near local roadways, 

the Rooftop model was developed.  Properties located along local roads were assumed to 

serve as potential traffic generators. To locate properties, ArcGIS was used to identify 

rooftops—and by extension, their associated properties—throughout Meade County. 

Properties were classified as small, medium, or large, depending on their use. For example, 

individual houses were classified as small, while an industrial complex was considered 

large. Furthermore, a connectivity rating was assigned to individual roads within the 

county. Connectivity ratings ranged from one to six. Higher values indicated greater 

connectivity between the individual road and the overall roadway network. The Rooftop 

model used these variables to estimate AADT values. However, it did not produce a 

measurable improvement in errors over the previous two models. The combination of high 

errors along with time constraints imposed by the model’s visual identification 

methodology ultimately excluded it as a viable alternative. 
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The 911 model estimated AADT based on the number and location of residential and 

commercial properties in Meade County, which were identified in its emergency services, 

or 911, database. This approach was similar to the Broward County with PVA model, given 

that it leveraged known property addresses. The model assigned residential and 

commercial properties to the nearest local roadway, with each property type serving as a 

type of trip generator. Testing this model revealed it represented an improvement over 

previously developed models, with lower errors found between known and estimated 

AADT. Unfortunately, statewide county-level 911 data proved difficult to obtain.  

Therefore, this model ended up relying on only a single county for its development and 

could not be practically extrapolated to model all counties in Kentucky. A more robust 

dataset was needed to provide statewide coverage of properties.   

 

The regression techniques originally used in the 911 model were adapted to develop two 

versions of the AVIS-HERE model. Both models relied on a combination of KYTC 

statewide data and proprietary HERE data to successfully estimate AADTs.  The AVIS-

HERE model has two multivariable forms, ordinary linear regression and non-linear 

regression. In the former, the model estimates AADTs as a single statewide model and does 

not make the distinction between different regions or districts. Two lane roads classified as 

local roads were used to calibrate and validate the models based on known traffic counts. 

Additional details on this model’s performance and derivation can be found in Appendix 

E. The second AVIS-HERE model used non-linear regression to estimate AADT. This 

model outperformed all models in the study with the exception of the 911 model. However, 

911 model data was not readily accessible for all counties in Kentucky. Therefore, the non-

linear regression AVIS-HERE model was selected as the Kentucky local roadway AADT 

model due to its combined high performance and data availability.  

 

Two sets of models were developed for Kentucky using non-linear regression, one for rural 

local roads and one for urban local roads.  A separation was made for these road types to 

account for the difference in traffic characteristics in these two settings.  Section 3.3 

includes a detailed discussion of these models and their characteristics.  

 

3.2 DATA COLLECTION 

 

Several data types were used as input into the AVIS-HERE model. The data collected 

included: short duration traffic counts, Highway Information System (HIS) variables, 

AVIS, and HERE. Short duration traffic counts track the number of vehicles passing a 

roadway segment through mechanical means. HIS is a database maintained by KYTC that 

includes various characteristics on the highway network including functional classification, 

number of lanes, etc. KYTC also provided access to their AVIS database, a collection of 

state registration records on all private and commercial vehicles. Finally, HERE 

corporation’s probe count data was acquired through the University, which tracks select 

smartphones, personal navigation devices, and vehicle fleets. Each data category is 

discussed in greater detail below.     
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3.2.1 SHORT DURATION TRAFFIC COUNTS 

 

KYTC strategically and periodically places automatic data recorders (ADRs) along select 

roadway segments across the state to collect traffic counts. ADRs typically stay in place 

for a minimum of 48 hours (although sometimes longer), but nearly always less than a 

week. KYTC primarily uses ADRs to collect data on state roadways directly under its 

jurisdiction, but they sometimes capture information on local roads as well. KYTC’s 

Division of Planning performs these actions as part of its Traffic Monitoring System in an 

effort to better understand the traffic demands and constraints existing along its 

transportation network. This information is available to the public through KYTC’s 

Interactive Statewide Traffic Counts Map (Figure A). 

 

 
Figure A: KYTC Traffic Counts, Franklin Co. 

 

Once traffic counts are known, KYTC transportation planners calculate the AADT for each 

location. The Division of Planning provided known AADTs along selected local roadways 

of interest. Portions of this data were used to validate and calibrate the AADT model 

through comparison between estimated and known AADTs.  

  

3.2.2 KYTC AADT DATA 

 

KYTC uses Automatic Traffic Recorders (ADRs) to collect data continuously in order to 

develop factors to annualize short duration coverage counts. Planners use this information 

to better inform its transportation planning activities as well as meet federal guidelines such 

as data collection requirements used for the Highway Performance Monitoring System 

(HPMS). KYTC AADT data used in this study consisted of their most recent traffic count 
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cycle of data compiled over the years 2010 through 2013. KYTC AADTs were used to test 

and calibrate models.  

     

3.2.3 AVIS DATA 

 

KYTC assesses the values and collects taxes on all vehicles across the state. Each year, 

Kentucky vehicle owners must file for continued vehicle registration and provide required, 

predetermined information to KYTC along with a fee. KYTC collects and manages this 

information through its Automated Vehicle Information System (AVIS). AVIS is an 

automated information technology support system used to collect, maintain, and process 

motor vehicle registration data. Each County Clerk office initially enters these data into 

AVIS through a computer interface. From each of these locations, the data move across the 

network into the centralized AVIS mainframe, located in Frankfort, and provides the 

KYTC with motor vehicle registration records from across the state.  

 

AVIS data include information related to the vehicle, owner, and the county of record. 

Specifically, AVIS data used in this analysis include: vehicle identification number (VIN), 

county of registration, year of registration, registration type, and the owner’s address. The 

registration type is categorized as official, commercial, or non-commercial. Vehicles 

registered as official include those owned by state agencies and organizations, such as 

police departments or universities. Commercial vehicles indicate ownership by registered 

businesses while non-commercial vehicles are those owned by private citizens (23). A 

small sample of AVIS data is shown in Table 2. All vehicle identification numbers (VINs) 

and address listings have been replaced with generic identifiers to maintain confidentiality 

of the data. 

 

Table 2: AVIS Data 

 
 

3.2.4 HERE DATA 

 

The HERE corporation, formerly known as NAVTEQ, is an industry leader in geospatial 

products, including digital maps. Various digital platforms incorporate this mapping 

technology into their consumer products, including cell phones and GPS devices. HERE 

uses mapping technology to track vehicle movements through the same cell phones and 

GPS devices. The tracking process relies upon cellular towers and antennas located across 

much of the nation to collect and monitor cell phone data and GPS signals.  

VIN CNTY_REG YEAR_REG REGISTRATION_TYPE ADDR_STREET ADDR_CITY ADDR_STATE ADDR_ZIP

VIN #1 MEAD 15 Non-Commercial Registration ADDRESS #1 EKRON KY 401170000

VIN #2 MEAD 15 Non-Commercial Registration ADDRESS #2 BRANDENBURG KY 401080000

VIN #3 MEAD 15 Commercial Registration ADDRESS #3 BRANDENBURG KY 401080000

VIN #4 MEAD 15 Commercial Registration ADDRESS #4 VINE GROVE KY 401750000

VIN #5 MEAD 15 Commercial Registration ADDRESS #5 BRANDENBURG KY 401080000

VIN #6 MEAD 15 Non-Commercial Registration ADDRESS #6 BRANDENBURG KY 401080000

VIN #7 MEAD 15 Non-Commercial Registration ADDRESS #7 BATTLETOWN KY 401040000

VIN #8 MEAD 15 Non-Commercial Registration ADDRESS #8 BRANDENBURG KY 401080000

VIN #10 MEAD 15 Non-Commercial Registration ADDRESS #10 GUSTON KY 401420000

VIN #11 MEAD 15 Official Registration ADDRESS #11 EKRON KY 401170000

VIN #12 MEAD 15 Non-Commercial Registration ADDRESS #12 VINE GROVE KY 401750000

VIN #13 MEAD 15 Official Registration ADDRESS #13 BRANDENBURG KY 401080000

VIN #14 MEAD 15 Non-Commercial Registration ADDRESS #14 EKRON KY 401170000

VIN #15 MEAD 15 Commercial Registration ADDRESS #15 BATTLETOWN KY 401040000
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HERE uses vehicle tracking data to calculate and monitor vehicular speeds across 

roadways. This is accomplished by monitoring the time it takes a vehicle to move along a 

predetermined roadway segment. HERE partitions existing roadways into a series of 

discrete segments defined by an origin (starting point) and destination (finish point). Each 

individual segment corresponds to a distinct “probe” area. Along with calculating average 

speeds, HERE collects probe counts from select smartphones, personal navigation devices, 

and vehicle delivery transponders (24). These counts, however, do not entirely represent 

the traffic on segments.  Limitations exist because not every vehicle on the roadway 

contains an applicable HERE probe device, and some contain more than one.   

  

HERE probe counts are available in 15-minute intervals for any given day of the week. 

HERE initially aggregates its probe data for each day in the month, which produces a daily 

count. Next, daily averages are determined for each day of the week. This methodology 

combines daily counts across a given month and calculates probe count averages for each 

day of the week. For example, a typical June may have four Thursdays. Probe counts are 

obtained for each Thursday and averaged into a single Thursday probe count for June. This 

single count is subsequently divided into 15-minute intervals. This same methodology is 

used for each month of the year. Consequently, a Thursday probe count average in June 

might differ from the Thursday probe count average occurring in another month. Probe 

count data was acquired from the HERE corporation for the 2012 calendar year (Error! 

ookmark not defined.).    

 

3.3 KENTUCKY AADT MODEL 

 

3.3.1 AVIS-HERE NON-LINEAR REGRESSION MODEL 

 

The AVIS-HERE non-linear regression model was selected as the best overall modeling 

method due to its ability to accurately estimate AADTs for Kentucky’s local roads while 

drawing from accessible and comprehensive data sources. This model relied on property 

records contained in the KYTC-sponsored AVIS database as well as the HERE 

corporation’s probe counts. As discussed previously, the AVIS database is a motor vehicle 

registration database that contains address information on people, commercial businesses, 

and governmental agencies that own one or more vehicles registered in the state of 

Kentucky. This vehicle registration database allowed for the use AVIS records as a proxy 

for residential and commercial properties located in Kentucky. For instance, all addresses 

of non-commercial registration records were considered private residences and used to 

determine residential properties in this model. Similarly, addresses of commercially-owned 

vehicles were designated as commercial properties. A limitation of this model is that it did 

not take into account residential and commercial properties owning a vehicle registered 

outside of Kentucky. In some instances, it was noted that a small number of vehicles were 

registered in Indiana, Tennessee, and other states. Nevertheless, this model should capture 

the large majority of passenger car vehicles traveling in Kentucky.     

 

KYTC categorizes AVIS data as proprietary and sensitive due to its ability to match vehicle 

identification numbers and addresses to specific individuals and businesses. Therefore, it 



www.manaraa.com

 

16 
 

was agreed to implement appropriate safeguards and protocols when handling this data to 

ensure confidentiality and prevent its release. The second data source included probe count 

tabulations from the 2012 HERE data set. This data set identifies traffic counts along 

roadway segments across the state. The factors used to formulate this model also included 

properties, commercial properties, vehicle probe counts, and road curvature. Each factor 

used is discussed in more detail below.    

 

3.3.1.1 RESIDENTIAL PROPERTIES 

 

All properties, residential or otherwise, were plotted in ArcMap. ArcMap displays GIS data 

on a planar map and allows users to overlay multiple layers of data on the map’s layout 

(25). Each layer of data corresponded to a unique dataset (e.g., roadway locations, property 

addresses). Figure B illustrates this concept through a listing of residential and commercial 

addresses, which have been plotted along local roadways in Meade County. 

 

 
 Figure B: AVIS Residential and Commercial Properties, Meade County 

 

In ArcMap, known addresses were plotted using geocoding, which locates addresses as 

GPS coordinates. Geocoding relies on the use of a preexisting address network to 

determine locations. In this case, ArcMap used the World Geocode Service — an online 

ArcGIS feature — to locate addresses.  
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The assignment of residential properties used non-commercial addresses shown in AVIS, 

which are linked to private citizens’ vehicle registrations. Non-commercial, vehicle 

registration addresses functioned as a proxy for residential properties since statewide 

property use data was not available for this project. The following fields were entered into 

the Geocode tool (Figure C) before it was run:  

 

 Input Table – AVIS data  

 Input Address Locator – comprehensive address book for residential, commercial, 

and industrial properties shown in ArcMap and known as the World Geocode 

Service 

 Input Address Field – variables used include ADDR_STREET, ADDR_CITY, 

ADDR_STATE, and ADDR_ZIP 

 Output Feature Class – final file name and its location for data as shown in ArcMap 

 

 
Figure C: ArcMap Geocoding Inputs 

 

3.3.1.2 COMMERCIAL PROPERTIES 

 

Commercial properties were located using their designated commercial and official 

property classifications within the AVIS database. Commercial, vehicle registration 

addresses in AVIS were used as proxies for commercial property addresses. In this case, 

any business owning a business-registered vehicle showed up as a commercial property. 

However, this method does overlook commercial businesses which have a vehicle 

registered under an individual’s name or businesses that do not own a vehicle. Official 

vehicles are those assigned to any branch of government, and which operate within the 
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boundaries of Kentucky. These vehicles were also designated as commercial properties due 

to their ability to generate higher traffic volumes along assigned roadways. The total 

number of official properties is much lower than the number of commercial properties and 

does not warrant assignment of an individual variable in this model. 

 

3.3.1.3 PROBE COUNTS 

 

The 2012 HERE probe counts were aggregated for the entire year to produce an annual 

traffic count for each roadway segment. The traffic count was then divided by 365 (the 

total number of days in a year) to calculate AADT. However, this measure is not a true 

AADT because it does not account for all vehicles using the roadway network.  HERE only 

counts probes from select smartphones, personal navigation devices, and vehicle delivery 

fleets. Next, the highway segmentation of the HERE roadway network, which does not use 

the same segmentation as the KYTC’s HIS files, was adapted to map the values of HERE 

probe counts in ArcMap. The HERE segmentation was then overlaid using the join feature 

in ArcMap, which produced an average value of the probe counts for each roadway 

segment from the KYTC HIS files. 

 

3.3.1.4 ROADWAY CURVATURE 

 

A value to describe the curvature of each road segment was calculated by determining the 

actual length of the road segment and the straight length between the end points of the road 

segment. The ratio of the actual length to the straight length of the road is the curve rating, 

and it was used as an input variable for the model. The curve rating was included in the 

model because roads designed with low anticipated AADTs would not have the adequate 

funding needed to make roads straight. Thus, low-volume roadways tend to be more 

sinuous than high-volume ones. An inverse relationship was expected between a road 

segment’s curve rating and its AADT. 

 

Two separate AVIS-HERE non-linear regression models were developed in this effort, 

including a rural- and an urban-based models. Developing two distinct models allowed for 

differentiation between conditions typically associated with rural and urban areas, 

respectively.  The urban and rural models, their development, and underlying results are 

described in greater detail in the following sections.   

 

3.3.2 RURAL MODEL DEVELOPMENT  

 

The rural models were developed using short duration traffic counts, residential and 

commercial property locations, and HERE probe counts. Each variable required 

assignment to a defined roadway segment.  In the initial step, defined roadway segments 

from KYTC’s HIS database via the ArcMap-based Traffic Flow (TF) file were obtained  

(26). This file contains roadway segments for all-type roads across the state, totaling 

152,388 segments. The complete list of roadway segments includes state-maintained and 

non-state maintained roads (typically local routes). Small, black dots divided the roadway 

into its partitioned segments. To illustrate, Figure D displays a small area within Franklin 

County, including U.S. Route 127, County Route 1036, and County Route 1039, and their 
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corresponding delineated segments. This figure includes five labels identifying the 

segments.  

 
Figure D: KYTC Roadway Segments 

 

Additional modifications were performed to the original KYTC roadway segment file to 

better differentiate between state-maintained and local roadway segments. This added 

segmentation step employed the “planarized lines” function in ArcMap to divide local 

roadways into a larger number of segments. Local roadways were divided into two distinct 

segments where they intersect with state-maintained roadways (previously it was a single, 

continuous segment). This step improved the accuracy of the model as it assigned discrete 

AADTs to both sides of the partitioned local roadway. This process resulted in a total of 

167,236 roadway segments in Kentucky, an increase of nearly 10 percent over the original 

KYTC file count. Figure E illustrates the same area of Franklin County depicted in Figure 

D, but using the modified segmentation process. The map now captures six distinct 

segments, or one more than the previously employed segmentation process. 
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Figure E: Modified Roadway Segments 

 

In the final step, HERE probe counts were incorporated into the segmentation process. 

HERE has delineated their own unique roadway segments across the state, which 

correspond with their probe counts (see Section 3.2.4 for a description of this process). 

HERE’s number of roadway segments vastly exceeds the counts of KYTC’s original model 

and the modified version, with a total of 514,293 segments. In Figure F, the number of 

roadway segments identified through probe counts is displayed for the same area as shown 

in Figures D and E. The number of segments increased to 11 for this map.  
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Figure F: HERE Probe Data Segments 

 

The geocoding process converts a table of addresses into a set of coordinates that can be 

mapped in ArcMap. Once mapped, they are treated as distinct entities (e.g., individual 

properties). Points maintain attributes from the AVIS database. Therefore, each point is 

also categorized as official, commercial, or non-commercial.  

 

The roadway network file containing the HERE probe count averages was joined to the 

Traffic Flow (TF) file from the KYTC HIS database. This created a new shapefile 

comprising all roadway along with the average probe count and known traffic counts. At 

this point the straight length of each road segment was calculated using the coordinates of 

the beginning and end points of each road segment. Actual road segment lengths were also 

calculated. Both calculations were performed using ArcMAP’s “calculate geometry” tool. 

The ratio of actual road length to the straight length was calculated for each segment. 

 

Each address coordinate then had information about the nearest roadway segment joined 

to it, creating a shapefile of points with the following information:  

 

 AVIS registration type: official, commercial, or non-commercial 

 Unique ID of the roadway segment nearest to the point 

 Average probe count associated with the nearest roadway segment 
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 State traffic count (the count was 0 for local roads) 

 Curve rating 

 

The shapefile of points with associated roadway segment information was exported into 

Excel to convert the data from point format to a polyline format. Each road segment, along 

with its associated traffic and probe count, was placed in a separate sheet. To populate the 

Residential variable for each roadway segment, the “countifs” function in Excel was 

executed such that it only counted the points for each road segment that were registered as 

non-commercial and had the nearest road segment with same unique ID as the segment in 

question. The Commercial variable was calculated in a similar manner, except it counted 

points registered as commercial or official. 

 

Several types of regression were attempted with four variables (commercial and residential 

registrations, probe count and curve rating), including ordinary multiple linear regression, 

log transformed multiple linear regression, and generalized linear regression. During model 

development, it was observed that many commercial properties had no vehicles registered 

to those locations. As such, the commercial variable was excluded from the model. After 

comparing errors among the different regression types, it was decided that a generalized 

linear model with a Poisson distribution and a log link function best fit the data. This type 

of model has the following format: 

 

𝑌 = 𝑒𝛼+𝛽1𝑋1+⋯+𝛽𝑛𝑋𝑛 
 

Where 

 𝑌 is the dependent variable  

 𝑒 is Euler’s number 

 𝛼 is the calibrated constant 

 𝛽𝑛 are the calibrated coefficients 

 𝑋𝑛 are the explanatory variables 

 𝑛 is the number of variables 

 

To account for the spatial and socioeconomic variations across Kentucky, the state was 

divided into three regions based on the highway districts. The regions and their respective 

highway districts were: 

 

 West: 1, 2, 3, 4 

 North Central: 5, 6, 7 

 East: 8, 9, 10, 11, 12 

 

One model was calibrated for each region. Certain restrictions were placed on the data used 

to calibrate each region to ensure that the calibration data closely matched the 

characteristics of the roads for which the models would be used to estimate AADT. The 

data used to calibrate the models were known traffic counts conducted by KYTC on rural, 

state-maintained roads that were functionally classified as local roads. Only roads with 

traffic counts between 20 and 1000 were included in the analysis. Several roads with known 

traffic counts from KYTC had AADT values ranging from 6 to 19, which appeared 
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inconsistent with numbers reported on an official traffic count. There may have been some 

errors in the collection or reporting of these counts. Because of this, they were left out of 

the model calibration to avoid introducing bias toward low AADT estimates. The upper 

limit of 1000 was established because it was assumed that no rural local roads in Kentucky 

lacking a known count would have daily traffic volumes exceeding 1000, given that the 

standard definition of a local road is one with an AADT of 400 or fewer. Of the road 

segments in each region that fit these criteria, 75 percent were used to calibrate the model. 

The remaining 25 percent in each region were used to validate the model. 

 

3.3.3 RURAL MODEL RESULTS 

 

The rural models were developed using Poisson distributed non-linear regression with a 

log link function in JMP 12.1, a statistical software package. The three model variables 

included probe count (Probe), curve rating (Curve), and residential AVIS registrations 

(Residential). Seventy-five percent of each region’s data set was randomly selected to 

calibrate the model. Table 3 shows the calibrated coefficients for each model, with the 

model taking the following form: 

 

𝐴𝐴𝐷𝑇 = 𝑒𝛼+𝛽1𝑃𝑟𝑜𝑏𝑒+𝛽2𝐶𝑢𝑟𝑣𝑒+𝛽3𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 
 

Table 3: Rural Regional Model Coefficients 

Model 𝛼 𝛽1, Probe 𝛽2, Curve 𝛽3, Residential 

West 5.7696115 0.0058785 -0.529959 0.0040769 

North-Central 5.2644224 0.0057724 -0.077597 0.0055012 

East 5.5054758 0.0056975 -0.015072 0.0023554 

     

Each regional model, and its explanatory variables, was statistically significant at the 0.01 

percent confidence level. Hence, regional explanatory variables were useful in accounting 

for the variation in AADT. Coefficient signs (positive or negative) for each model were 

calibrated as expected. Both Probe and Residential variables have positive coefficients. 

This meant an increased probe count or residential vehicle registration along a road 

segment would produce a higher AADT estimate. The Curve coefficient is negative, which 

indicates curvier roads have lower AADTs. It was anticipated that the Curve variable 

would have this effect when they decided to incorporate it into the model.  

 

Next, each model’s AADT estimative capability was tested by using the remaining 25 

percent of the data set for validation. This step compared estimated AADTs within each 

calibrated model with their respective known AADTs, as contained in the regional 

validation data sets. This occurred for each highway segment and generated several error 

measures. Table 4 summarizes the error measures from the regional models’ validation 

data. 
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Table 4: Rural Regional Model Errors 

 West North-Central East 

N (sample size) 194 45 150 

Mean Absolute Error 133 152 158 

St. Dev. Absolute Error 128 125 121 

MAPE (%) 102 123 97 

Max % Error 801 790 1104 

Min % Error -76 -75 -73 

Where 

 Mean Absolute Error is the mean absolute value of the difference between the 

estimated AADT and the known AADT for every sample used in the validation 

process 

 Standard Deviation of Absolute Error is the standard deviation of the absolute 

difference between the known AADT and the estimated AADT 

 Mean Absolute Percent Error (MAPE) is the average absolute value of the 

percent error for every sample used in the validation process 

 Maximum Positive Error is the highest positive error observed during model 

validation 

 Maximum Negative Error is the highest negative error observed during model 

validation 

 

The measures of error were calculated using the following equations: 

 

 Mean Absolute Error = ∑
|𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐴𝐷𝑇𝑖−𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐴𝐷𝑇𝑖|

𝑛

𝑛
𝑖=1  

 Standard Deviation of Absolute Error = 

√
∑ (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟−𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟𝑖

𝑛
𝑖=1 )2

𝑛−1
 

 Mean Absolute Percent Error =
∑

|𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐴𝐷𝑇𝑖−𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐴𝐷𝑇𝑖|

𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐴𝐷𝑇1

𝑛
𝑖=1

𝑛
 

 

 Maximum Positive Error = max
𝑛

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐴𝐷𝑇𝑖−𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐴𝐷𝑇𝑖

𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐴𝐷𝑇1
 

 

 Maximum Negative Error = min
𝑛

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐴𝐷𝑇𝑖−𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐴𝐷𝑇𝑖

𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝐴𝐷𝑇1
 

 

Each regional model showed standard deviations of the absolute error that were nearly the 

same magnitude as the mean absolute error. Assuming errors are normally distributed, this 

means the model produced a wide range of errors, which is not ideal, but it does not 

necessarily diminish the model’s ability to estimate AADT. The MAPE for each model 

was around 100 percent, meaning the estimated AADT — on average — differs by a factor 

of two. However, the purpose of an estimate is to identify locations suitable for safety 

improvements so errors of this magnitude should not interfere with this purpose. The 

sensitivity analysis discusses this further.  



www.manaraa.com

 

25 
 

 

Figure G shows the geographical distribution of the error (Model AADT – Known AADT) 

for the calibrated and validated data sets. The creation of three regional models 

compensated for geographical and socioeconomic variability typically absent in a single 

statewide model. The figure shows only rural, local roads with known AADTs between 20 

and 1,000. Blue lines represent segments where the model underestimated AADT; gray 

lines indicate close alignment between known and estimated AADTs; and red lines 

represent segments where the model overestimated AADT. Geographical bias in AADT 

estimation is limited because the under- and overestimates on road segments are evenly 

distributed across the state. Therefore, this result supports the decision to create three 

regional models rather than a single statewide model. 

 

 
Figure G: Geographical Distribution of Errors 

 

Figure H displays the difference (represented as error) between the AADT estimates for 

the three models’ validation datasets and their known AADTs on the y-axis. The x-axis 

includes known AADTs. The models underestimated high AADTs and overestimated low 

AADTs. Consequently, the three regional models produced the lowest errors on road 

segments between the AADT range of 100 to 400.  It was assumed that most Kentucky 

rural, local roads also fall in this AADT range so this estimate should prove beneficial. 

This model was selected due to its increased performance over the original AVIS-HERE 

OLR model (shown in Appendix E).  
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Figure H: Validation Errors in Three Regional Models 

Figures I, J, and K display known versus estimated AADTs for each Kentucky region. An 

ideal estimate would form a 45 degree line demonstrating alignment between known and 

estimated AADTs. This hypothetical line is shown in each figure. Data points above the 

line represent segments where the model overestimated AADT and points below the line 

represent segments where the model underestimated AADT. Greater distances between the 

points and the line represent greater errors. 

 

 
Figure I: West Regional Model, Known vs. Model AADT 
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Figure J: North-Central Regional Model, Known vs. Model AADT 

 

 
Figure K: East Regional Model, Known vs. Model AADT 

 

Each model contained a baseline AADT which represented the minimum value the model 

could estimate. This baseline was approximately 100 for the West and North-Central 

models and approximately 200 for the East model. The calibrated constant 𝛼 was 

responsible for this baseline since it remained constant as other explanatory variables 

moved to zero. Each model produced higher errors as AADT estimates increase. 

Nevertheless, these regional models focused on rural, local roadways – which typically 

have lower AADTs—so the higher range AADT errors were not cause for concern.     

 

Next, KYTC’s daily vehicle miles traveled (DVMT) estimate for rural, local roads were 

collected and compared those values to each model’s AADT estimates. DVMT is 
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determined by multiplying a local road segment’s distance (in miles) with its AADT and 

represents the total number of vehicle miles traveled along a given roadway segment daily. 

KYTC employs a power function to estimate DVMT for rural, local roads. County collector 

AADTs serve as explanatory variables in this model which can be described as follows 

(27):  

 

𝐿𝑜𝑐𝑎𝑙 𝐷𝑉𝑀𝑇 = 𝐿𝑜𝑐𝑎𝑙 𝑀𝑖𝑙𝑒𝑠 ∗ 𝐿𝑜𝑐𝑎𝑙 𝐴𝐴𝐷𝑇, 𝑤ℎ𝑒𝑟𝑒 𝐿𝑜𝑐𝑎𝑙 𝐴𝐴𝐷𝑇
= 3.3439 ∗ (𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 𝐴𝐴𝐷𝑇)0.6248 

 

Each rural, local DVMT estimate was calculated at the roadway segment level and 

aggregated county-wide to produce a county-level DVMT value, the same scale used in 

the regional models. The DVMT values served as a basis of comparison with the regional 

model AADT estimates. In most instances, the models produced higher DVMT values than 

the KYTC DVMT estimates. Ratios by county of the KYTC DVMT estimated values to 

the model’s estimated AADTs is shown in Figure L. A brief discussion of this adjustment 

methodology is described in the subsequent paragraphs.     

 

 
Figure L: VMT Adjustment Ratio by County 

 

The KYTC DVMT to model DVMT ratio was used as an adjustment factor in the model’s 

AADT estimates. For example, a ratio of 0.75 would be multiplied by the estimated AADT 

to further refine the estimate. The majority of adjustment factors were found to be less than 

one. This meant that the model DVMT estimates tended to exceed KYTC DVMT values. 
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The lowest adjustment ratios were found in population and urban areas, such as northern 

Kentucky. These regions typically have increased cell phone coverage which leads to an 

increase in vehicle probe counts (HERE data). The increased population density and 

proximity to local roads also contributed to higher residential variable values. Therefore, 

the rural, local AADT road estimates in these counties typically exceeded rural, local 

AADT road estimates in less populated counties. This, in turn, produced higher DVMT 

values for the model estimates compared to the KYTC DVMT values. In Figure L, counties 

in pink and red show counties where the KYTC DVMT values exceeded the model’s 

DVMT estimates; conversely, blue counties show locations where the KYTC DVMT 

values fell below the model’s estimates.  The latter case represented the majority of 

counties fitting this description.        

 

Each individual county adjustment factor was multiplied by its respective county AADT 

estimate to produce a revised AADT estimate. This revised estimate provided additional 

weighting from the KYTC DVMT data. The different error measures were recalculated 

from these revised estimates as shown in Table 5.    

 

Table 5: Rural Regional Model Errors with DVMT Adjustment Factor 

 West 

North- 

Central East 

N (sample size) 194 45 150 

Mean Absolute Error 129 172 149 

St. Dev. Absolute Error 142 184 159 

MAPE (%) 87 85 61 

Max % Error 797 519 702 

Min % Error -80 -94 -85 

 

Various error measures changed —in some cases substantially — from the original error 

measures shown in Table 4. The MAPE improved the most as evidenced by a 15 percent 

or more reduction in each region. Similarly, the maximum percent error decreased in each 

region, particularly for the East and North Central regions. The mean absolute error 

experienced minor improvements in the West and East regions but increased slightly in the 

North Central region. However, this measure was less useful than the other error measures 

since it lacked normalized distribution across its AADT data.  

 

Adopting the adjustment factor, Figure M displays the difference (represented as error) 

between the revised AADT estimates for the three models’ validation datasets and their 

known AADTs on the y-axis. The x-axis shows known AADTs. The models 

underestimated high AADTs and overestimated low AADTs. In this adjusted model, the 

three regional models produced the lowest errors on road segments between the AADT 

range of 100 to 300. The actual AADTs are compared to the estimated AADTs in Figure 

N, O, and P. In most instances, the DVMT adjustment factors reduced AADT estimates.  
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Figure M: Validation Errors in Three Regional Models (w/ Adjustment 

Factor) 

 

 

 

 

The combined errors graph for the three models (Figure M) displays a similar trend as 

previously shown in Figure H. Recall, the previous error graph did not account for the 

adjustment factor per the KYTC DVMT data. Nevertheless, the newly revised errors 

were nearly zero in the 100 to 300 AADT range, an ideal parameter for the rural, local 

roads. The revised model continued to underestimate AADTs for roads with higher 

known AADTs but these roads typically lie outside the AADT range expected for rural, 

local roads. Therefore, improving model errors across the lower AADT ranges remained 

the focus as achieved here.     
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Figure N: West Regional Model, Known vs Model AADT (w/ 

Adjustment) 

 

 
Figure O: North-Central Regional Model, Known vs Model AADT (w/ 

Adjustment) 
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Figure P: East Regional Model, Known vs Model AADT (w/ Adjustment) 

Next, known AADTs were graphed against estimated AADTs for each of the regional 

models (Figures N, O, P). The minimum estimated AADT decreased by a factor of two for 

each model. Thus, these regional models improved the alignment between known and 

estimated AADTs, as represented by an increased number of points moving closer to the 

45 degree graph line. Each county possessed a unique adjustment factor and therefore, was 

adjusted independently from other counties. This lead to increased variation in the model 

AADT estimates. This can be seen by an increase in scatter between points amongst 

Figures N, O, and P compared to Figures I, J, and K.  

 

3.3.4 URBAN MODEL DEVELOPMENT 

 

The urban AADT model was created using a similar methodology as that employed in the 

rural AADT models development. To this extent, the urban models used the same 

segmentation process for subdividing roadways as described in detail in section 3.3.2. The 

urban model consisted of the same three variables (probe count, curve rating, and 

residential AVIS registrations) derived from the same data sets. Once again, this model 

split the state into three separate geographical regions (West, North-Central, and East) 

using the same procedures shown in developing the rural model. 75% of the AADT data 

in each region was used to calibrate the model and the remaining 25% of data to validate 

the model.  However, there was one major methodological difference between the rural 

and urban model development. The original rural AADT model required road segments 

with a known AADT between 20 and 1,000, while no such limitation was placed on the 

calibration data set for the urban model.  In fact, urban traffic counts span a wide range of 

values and limitations on the calibrated datasets were not deemed necessary.  

 

 

 

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

M
o

d
el

 A
A

D
T

Known AADT

East Regional Model (Adjusted)



www.manaraa.com

 

33 
 

3.3.5 URBAN MODEL RESULTS 

 

The urban models were calibrated using Poisson distributed non-linear regression with a 

log link function in JMP 12.1, in a similar fashion to the rural models. The three model 

variables included probe count (Probe), curve rating (Curve), and residential AVIS 

registrations (Residential). Table 6 shows the calibrated coefficients for each model, with 

the model taking the following form: 

 

𝐴𝐴𝐷𝑇 = 𝑒𝛼+𝛽1𝑃𝑟𝑜𝑏𝑒+𝛽2𝐶𝑢𝑟𝑣𝑒+𝛽3𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 
 

Table 6: Urban Regional Model Coefficients 

Model 𝛼 𝛽1, Probe 𝛽2, Curve 𝛽3, Residential 

West 6.470643 0.0064529 -0.125808 0.0028887 

North-Central 5.8138784 0.0112211 0.2191382 0.0115388 

East 7.0093157 0.0072614 -0.079176 0.0002173 

Each regional model, and its explanatory variables, was statistically significant at the 0.01 

percent confidence level. Hence, regional explanatory variables were useful in accounting 

for the variation in AADT. Coefficient signs (positive or negative) for each model 

performed as expected for all but one coefficient. Both Probe and Residential variables had 

positive coefficients.  This meant an increased probe count or residential vehicle 

registration along a road segment produced a higher AADT estimate.  The Curve 

coefficient was negative for the West and East models, which indicated curvier roads have 

lower AADTs. However, the Curve coefficient in the North-Central model was positive, 

which ran contrary to the results of the West and East models.  Nonetheless, dividing the 

state into three regions limited the overall effect this positive coefficient had on the 

cumulative urban AADT estimates for the state.  

 

The same error metrics were calculated as before as suitable measures of effectiveness.  

Table 7 summarizes these error types and their associated valuations from the urban 

regional models’ validation data. 

 

Table 7: Urban Regional Models Errors 

 West North-Central East 

N (sample size) 16 24 35 

Mean Absolute Error 916 892 1048 

St. Dev. Absolute Error 750 613 1393 

MAPE (%) 1956 1828 354 

Max % Error 16878 11070 8278 

Min % Error -79 -63 -81 

 

The Table 7 summary results demonstrate the urban models had much higher errors when 

compared to the rural models.  One possible explanation for this may be the higher 

variability of AADT values used to calibrate the urban models.  Also, the urban model 
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relied upon a smaller available dataset to calibrate each regional model which likely 

impacted the model’s effectiveness. 

 

The KYTC-provided DVMT values were used as control totals to develop adjustment 

factors and modify the urban models’ AADT estimates. However the calculations used to 

derive control totals differed between the urban models and the rural models.  In the rural 

models, the DVMT adjustment factor represented the ratio between KYTC-derived rural 

DVMT values for a county and rural DVMT model estimates for the same county.  This 

adjustment factor was applied to each rural local road segment in the county.  In the urban 

models, adjustment factors were calculated differently based on the following two 

scenarios: the model-derived DVMT was less than the KYTC-derived DVMT or the 

model-derived DVMT was greater than the KYTC-derived DVMT.  For the first scenario, 

adjustments were made to urban local roads found to intersect state roads when the 

county’s model-derived DVMT was less than the KYTC-derived DVMT using an 

adjustment factor that increased AADT on roads that intersect state roads.  With the second 

the urban local roads that do not intersect state roads received DVMT adjustments if the 

county’s model DVMT exceeded the Cabinet’s DVMT value, thereby reducing the urban 

local road AADT values.   

 

The purpose of creating adjustment factors in this manner was to avoid assigning additional 

AADT on neighborhood roads that only connect to other local roads while assigning 

increased AADT on roads that contribute more heavily to state roads.  An example 

adjustment factor calculation for each described case scenarios shown below (and based 

on the DVMT data in Table 8). 

 

Table 8: Urban DVMT Control Total Data 

County 

DVMT do not 

intersect state 

DVMT intersect 

state 

KYTC 

DVMT 

Adjustment 

Factor 

Anderson 7361 6529 55000 7.30 

Pike 14367 28707 37000 0.58 

The urban AADT model estimated AADT values that lead to a lower DVMT (combined 

intersect and do not intersect) in Anderson County than estimated by KYTC in 2014.  

Therefore, an adjustment factor was needed to increase AADT on the urban, local roads 

that intersect state roads. The adjustment factor was calculated as follows:  

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐶𝑎𝑏𝑖𝑛𝑒𝑡 𝐷𝑉𝑀𝑇 − 𝐷𝑉𝑀𝑇 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒 𝑟𝑜𝑎𝑑𝑠

𝐷𝑉𝑀𝑇 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒 𝑟𝑜𝑎𝑑𝑠

=
(55000 − 7361)

6529
= 7.30 

 

This factor holds constant the AADT on local roads that do not intersect state roads while 

increasing AADT on local roads that intersect state roads to 47662. 
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In another example, Pike County had a larger model DVMT value than the KYTC DVMT, 

thus requiring an adjustment factor to reduce the AADT on urban, local roads that only 

intersect other local roads. The adjustment factor was calculated as follows:  

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝐶𝑎𝑏𝑖𝑛𝑒𝑡 𝐷𝑉𝑀𝑇 − 𝐷𝑉𝑀𝑇  𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒 𝑟𝑜𝑎𝑑𝑠

𝐷𝑉𝑀𝑇 𝑛𝑜𝑡 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑒 𝑟𝑜𝑎𝑑𝑠

=
(37000 − 28707)

14367
= 0.58 

 

This factor holds constant the AADT on local roads that intersect state roads while only 

decreasing AADT on local roads that do not intersect state roads to 8333. 

 

Applying the DVMT adjustment factors to the individual road segments in the validation 

datasets and recalculating the selected measures of effectiveness resulted in the errors 

displayed in Table 9. 

 

Table 9:  Errors from Urban Regional Models after DVMT 

Adjustment 

 West North-Central East 

N (sample size) 16 24 35 

Mean Absolute Error 915 764 1063 

St. Dev. Absolute Error 751 591 1178 

MAPE (%) 1923 1145 313 

Max % Error 16878 6268 8278 

Min % Error -79 -63 -81 

 

The greatest impact found in using DVMT adjustment factors was seen in the associated 

MAPE value reductions shown in each region.  The minimum errors did not change and 

the maximum error was only reduced for the North-Central model.  The DVMT adjustment 

factors improved the model performance and therefore, the adjustments were applied to the 

final urban local road AADT estimates. 
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CHAPTER 4: SENSITIVITY ANALYSIS 

 

4.1 SENSITIVITY ANALYSIS 

 

Estimative models inherently rely on engineering judgment and analytical assumptions. 

These are incorporated into the models’ algorithms to compute the desired outputs. In some 

cases, however, a model may estimate values that do not align with expected empirical 

solutions. This requires the model developer to perform additional checks and/or validation 

procedures to further improve its performance. Sensitivity analysis is one procedure that 

can be used to improve results. A sensitivity analysis measures how a model’s output (or 

dependent variable) is expected to change based upon the explanatory factors (or 

independent variables) used to develop it. This process provides an additional check on 

uncertainty or the model’s assumptions and determines how they might impact the 

predicted solutions. One of the key goals of a sensitivity analysis is to minimize any 

unexpected or adverse outcomes stemming from a less-than-satisfactory output. This 

process helps ensure that the model’s inaccuracies do not have an overly adverse impact 

on the output. Following this process, a sensitivity analysis was developed to analyze the 

selected AADT traffic model and its expected range of impacts on crash predictions, 

including their severity.   

 

4.1.1 KYTC CRASHES AND ASSOCIATED COSTS 

 

KYTC seeks the use of an AADT traffic model to estimate traffic counts on local roads 

across the state. These values are critical to KYTC for a number of reasons, including 

providing a means to predict crashes along a roadway segment or at an intersection. KYTC 

uses crash data to evaluate safety measure installations. Roadway segments or intersections 

experiencing a large number of crashes warrant additional scrutiny to decide whether 

increased funding might reduce crash frequency. In some cases, the installation of safety 

measures at an appropriate roadway segment or intersection may significantly lower the 

number of crashes within that area. In other cases, the installation of the safety measures 

may have a negligible impact and therefore provide little benefit at a potentially high 

financial cost. Intuitively, it is in KYTC’s interest to prioritize locations where treatments 

will provide the greatest return on investment while avoiding areas where treatments will 

yield minimal benefits at a significant cost. State DOTs take their lead from the U.S. DOT 

to provide safe roadways to all their citizens. In fact, a significant percentage of overall 

federal highway funding is dedicated exclusively to reducing crashes. This aligns with the 

U.S. DOT’s 2012-2016 Strategic Plan “Transportation for a New Generation” and their 

goal to “improve public health and safety by reducing transportation-related fatalities and 

injuries.” (28)  

 

KYTC leaders and decision-makers must rely on sound estimates and projections whenever 

determining which roadways or intersections need safety treatments. Likewise, roadway 

sites receive a prioritization ranking based on the expected benefits of installing a safety 

measure. To compare the effects of measures at different sites, the FHWA has developed 

crash costs, which are estimated based on the crash severity in terms of human life and 

property damage. The categories or types of crash severity are: fatal, disabling injury, 
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evident injury, possible injury, and property damage only. Each of these categories is 

assigned a corresponding monetary value (in dollars), which quantifies impacts financially. 

Along with the crash types, the crash costs are further delineated according to human 

capital crash costs and comprehensive crash costs. The human capital crash costs category 

only includes financial losses directly associated with the crash, such as vehicle repair and 

medical treatment, among others. The comprehensive crash costs category takes this a step 

further and assigns a monetary value to the burdens imposed on the individual’s quality of 

life due to time lost during recovery or potential physical limitations attributable to the 

crash. Table 10 lists the FHWA’s crash cost estimates (29).  

 

Table 10: FHWA Crash Cost Estimates by Crash Severity 

 

Crash Type 
Human Capital       

Crash Costs 

Comprehensive 

Crash Costs 

Fatal (K) $1,245,600 $4,008,900 

Disabling Injury (A) $111,400 $216,000 

Evident Injury (B) $41,900 $79,000 

Possible Injury (C) $28,400 $44,900 

Property Damage Only (O) $6,400 $7,400 

 

4.1.2 SENSITIVITY ANALYSIS METHODOLOGY 

 

A sensitivity analysis was performed to assess how the model’s estimated local road AADT 

values potentially impact crash estimates when accounting for errors.  Safety performance 

functions (SPFs) are used to estimate crashes, and for this project, were taken from the 

Highway Safety Manual (HSM).  SPF equations rely upon AADTs as input variables, in 

our case, a known AADT for the state road and an estimated AADT for the local road. This 

sensitivity analysis used the models’ maximum and minimum percent errors to estimate 

AADT estimation error impact on predicted crashes.  

 

First, all intersections in Kentucky were located via the GIS platform. Intersections were 

selected so they would match the data set used in the AADT model. The types of 

intersections were subsequently categorized into three groups, including: 

 

 State-maintained roadways intersecting state-maintained roadways (State-State) 

 State-maintained roadways intersecting local roadways (State-Local) 

 Local roadways intersecting local roadways (Local-Local) 

 

All intersections forming a state-to-local roadway crossing (State-Local) formed the basis 

of the sensitivity analysis. Intersections were then classified based on their characteristics. 

These were used to determine the appropriate HSM regression equations used in the 

analysis. For intersections, the factors considered included: 
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 Rural or urban roads 

 Number of intersection approaches (three versus four) 

 Unsignalized or signalized 

 Number of lanes in each direction 

 

Roadway characteristics provide transportation planners the details required when 

selecting the appropriate regression equations to use. Furthermore, each regression 

equation is only suitable for a specified range of traffic volumes. In this sensitivity analysis, 

all of the traffic volumes on the major and minor roadways approaching intersections fell 

within the acceptable ranges. Therefore, no additional modifications to the regression 

equations were required.  

 

Next, the AADTs were used in the sensitivity analysis. Known AADT is available from 

HIS for the major crossing or state road. Conversely, the AADT for the local intersecting 

roadway is estimated from the AVIS-HERE model. Once the AADTs and roadway 

characteristics are known, the SPF can be evaluated and crash estimates produced.  

 

4.1.3 RURAL MODEL SENSITIVITY ANALYSIS 

   

Most rural two-lane state-local road intersections are stop controlled on the minor 

approach.  SPF regression equations from the Highway Safety Manual for 3 and 4 leg 

intersections are shown below (30): 

 

Rural Two-Lane, Two-Way Roads 

 

1. Three-Leg Stop-Sign Controlled Intersections 

  

 Nspf,3SSC  = exp[-9.86 + 0.79 x ln(AADTmaj) + 0.49 x ln(AADTmin)]    

 

Where: 

 Nspf,3SSC  = estimate of intersection-related predicted crash average crash 

frequency for base conditions for three-leg stop-controlled intersections 

 AADTmaj = AADT (vehicles per day) on the major road 

 AADTmin = AADT (vehicles per day) on the minor road 

 Overdispersion parameter = 0.46 

 

2. Four-Leg Stop-Sign Controlled Intersections 

  

 Nspf,4SSC  = exp[-8.56 + 0.60 x ln(AADTmaj) + 0.61 x ln(AADTmin)]    

 

Where: 

 Nspf,4SSC  = estimate of intersection-related predicted crash average crash 

frequency for base conditions for four-leg stop-controlled intersections 

 AADTmaj = AADT (vehicles per day) on the major road 

 AADTmin = AADT (vehicles per day) on the minor road 

 Overdispersion parameter = 0.494 
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A crash frequency estimate at a select intersection is determined using the intersection 

regression SPF equations and their corresponding AADT values1. The Empirical Bayes 

method is then used to refine this estimate by incorporating known crash data. It adjusts 

the estimate for future predicted crashes using the overdispersion parameter calculated 

during the development of the SPF equations. The Empirical Bayes formula is as follows: 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐶𝑟𝑎𝑠ℎ𝑒𝑠 𝑖𝑛 𝑋 𝑦𝑒𝑎𝑟𝑠
= 𝑂𝑣𝑒𝑟𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∗ 𝑁 ∗ 𝐶𝑀𝐹 ∗ 𝑋
+ (1 − 𝑂𝑣𝑒𝑟𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) ∗ 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑐𝑟𝑎𝑠ℎ𝑒𝑠   

 

Where: 

 Overdispersion parameter is calibrated for each SPF and is obtained from the 

Highway Safety Manual 

 N is the number of crashes predicted by the SPF 

 CMF is a crash modification factor (from Highway Safety Manual or CMF 

Clearinghouse) 

 X is the number of years 

 Previous crashes is the number of crashes at the intersection in the past X years 

 

The overdispersion parameter determines the SPF’s weighted contribution to the overall 

crash estimate. In this case, the SPF predictions for three- and four-leg rural, state-local 

intersections contributed 46 percent and 49.4 percent, respectively, to the weighted 

analysis. Known, historical crash frequencies contributed the majority. Consequently, the 

errors stemming from AADT estimates in this model will be minimized due to their 

reduced influence on predicting expected crashes through Empirical Bayes.     

 

A sensitivity analysis assesses the impact an estimated AADT’s error has on a decision-

maker’s selection process in implementing appropriate countermeasures at intersections. 

AADT estimate errors influence the crash frequency predicted by SPFs which, in turn, 

influences the Empirical Bays crash frequency prediction. Safety countermeasures can be 

based on a cost-benefit ratio whereby the benefits received (e.g., crash reduction) exceed 

the costs (e.g., countermeasure expense) as quantified in monetary terms.  

 

This sensitivity analysis compared the model’s estimated AADTs with estimated AADTs 

adjusted for errors. It then determined how “sensitive” the determinant variable (i.e., 

expected crashes) is to variations in error. In this case, the estimated AADTs adjusted for 

errors included the following: maximum percent error (797%), average positive error 

(134%), minimum percent error (-94%), and average negative error (-38%). The maximum 

percent error and minimum percent error represent the extreme outliers for AADT 

estimates and evaluate the maximum extent to which the model may over- or underestimate 

                                                      
1 In many instances, KYTC does not know the AADT of a minor road, typically a rural, local road. 
This becomes problematic since the minor road AADT is a key input into the regression equations 
described above. Therefore, KYTC currently estimates an AADT of 300 on minor roads where the 
AADT is unknown.  
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crashes. Likewise, the average positive error and average negative error represent the 

average AADT error effect on over- or underestimating crashes. AADTs were adjusted 

using the following equation:    

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐴𝐴𝐷𝑇 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝐴𝐷𝑇/(1 + 𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐸𝑟𝑟𝑜𝑟) 
 

Where: 

 Estimated AADT is the AADT generated by the model 

 Percent Error is either maximum percent error, minimum percent error, average 

positive error, or average negative error 

 

As seen in the previous equation, positive errors arise when overestimating AADT and 

negative results arise when underestimating AADT. The adjusted AADT estimates were 

then used to determine revised SPF values. The Empirical Bayes method incorporated these 

updates and used crash data over the previous 10 years assuming a crash modification 

factor (CMF) of 0.15. A weighted crash cost average of $54,051 was calculated using the 

cost figures in Table 10 and applied to projected crashes over the next 10 years. Then, a 

benefit-to-cost ratio equal to five was used to assess maximum safety countermeasure costs 

for each intersection. Five iterations of this process were conducted to include the estimated 

AADT and its error-induced derivatives. Those determined most cost-effective were 

deemed feasible.      

 

Next, percent errors were calculated for maximum countermeasure costs between the 

original, estimated AADT and its adjusted AADTs. This range of errors described the 

association of intersection crash predictions based on differences in errors. AADT 

estimates ranged in error from a 134 percent overestimate to a 33 percent underestimate. 

However, applying these same AADT estimates to crash predictions resulted in a 

significant drop in errors as evidenced by their 28 percent overestimate and 22 percent 

underestimate. The most extreme errors in AADT estimation included a 797 percent 

overestimate and a 94 percent underestimate.  Yet, these corresponding errors translated 

into a 54 percent overestimate and 253 percent underestimate on predicting crashes. 

However, the AADT errors have only a limited impact on the final crash predictions for 

rural, local roads. This is because the local road AADT only influences the number of 

crashes predicted by SPFs. Intersection crash predictions must take into account both SPFs 

and historical crash rates, with the latter weighted proportionately higher.  

 

A sensitivity analysis helps identify possible locations for Type I and Type II errors. A 

Type I error overestimates the number of crashes occurring at an intersection. Type I errors 

can lead decision-makers to implement safety countermeasures which may not be needed. 

Essentially, this error can lead to unneeded expenditures on safety countermeasure but 

would not have a measurable impact on crash risk. Conversely, a Type II error 

underestimates the number of crashes expected at an intersection. In this instance, decision-

makers may not fully realize an intersection’s crash risk and therefore, choose not to fund 

it for safety countermeasures. Type II errors are considered more severe because they may 

result in higher than anticipated crash frequency or severity. 
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Oftentimes, the model estimated Type II errors at intersections lacking a historical record 

of known crashes. These locations relied solely on AADT estimates since they lacked 

historical crash data. Consequently, the errors associated with these AADT estimates 

regularly underestimated AADT and by extension, underestimated crashes. Still, 

intersections previously not experiencing a crash would probably not warrant consideration 

of safety countermeasure treatment anyway. Rather, intersections identified as high crash 

rate locations based on historical crash data garner increased interest from transportation 

planners. In these instances, the historical crash data controls overestimated crashes. This 

greatly diminished AADT estimate errors’ ability to adversely impact the calculated crash 

rate.         

 

In summary, AADT estimate errors did not significantly impact the model as a tool in 

prioritizing safety countermeasures. The controlling variable in crash prediction is 

historical crash data. AADT estimates may lead to Type II errors but the sensitivity analysis 

demonstrated this primarily occurs at intersections lacking historical crashes. These 

locations are unlikely to receive consideration for safety countermeasures anyway. Most 

intersection locations have a history of crashes and would find this method suitable for 

further analysis.      

 

4.1.4 URBAN MODEL SENSITIVITY ANALYSIS 

 

A sensitivity analysis for the urban AADT estimates was conducted in parallel to the 

sensitivity analysis performed for the rural AADT estimates.  Intersection crashes were 

predicted following SPFs from the Highway Safety Manual and utilizing the Empirical 

Bayes method to evaluate the impact of the models’ errors on the selection of intersections 

for the implementation of safety countermeasures.  Crashes were predicted using the base 

AADT estimates from the urban models and AADTs adjusted using the following four 

errors associated with the models: maximum percent error (16878%), average positive 

error (1533%), minimum percent error (-81%), and average negative error (-44%).  The 

four intersection SPFs used in this analysis are summarized below. 

 

 

Urban Intersection SPFs 

 

1. Three-Leg Stop-SignControlled Intersections 

  

 Nspf,3SSC  = exp[-13.36 + 1.11x ln(AADTmaj) + 0.41 x ln(AADTmin)]    

 

Where: 

 Nspf,3SST  = estimate of intersection-related predicted crash average crash 

frequency for base conditions for three-leg stop-sign controlled 

intersections 

 AADTmaj = AADT (vehicles per day) on the major road 

 AADTmin = AADT (vehicles per day) on the minor road 

 Overdispersion parameter = 0.80 
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2. Four-Leg Stop-SignControlled Intersections 

  

 Nspf,4SSC  = exp[-12.13 + 1.11 x ln(AADTmaj) + 0.26 x ln(AADTmin)]    

 

Where: 

 Nspf,4SSC  = estimate of intersection-related predicted crash average crash 

frequency for base conditions for four-leg stop-sign controlled intersections 

 AADTmaj = AADT (vehicles per day) on the major road 

 AADTmin = AADT (vehicles per day) on the minor road 

 Overdispersion parameter = 0.33 

 

 

3. Three-Leg Signal-Controlled Intersections 

  

 Nspf,3SC  = exp[-8.90 + 0.82 x ln(AADTmaj) + 0.25 x ln(AADTmin)]    

 

Where: 

 Nspf,3SC  = estimate of intersection-related predicted crash average crash 

frequency for base conditions for three-leg signal-controlled intersections 

 AADTmaj = AADT (vehicles per day) on the major road 

 AADTmin = AADT (vehicles per day) on the minor road 

 Overdispersion parameter = 0.40 

 

4. Four-Leg signal-Controlled Intersections 

  

 Nspf,4SC  = exp[-10.99+ 1.07 x ln(AADTmaj) + 0.23 x ln(AADTmin)]    

 

Where: 

 Nspf,4SC  = estimate of intersection-related predicted crash average crash 

frequency for base conditions for four-leg signal-controlled intersections 

 AADTmaj = AADT (vehicles per day) on the major road 

 AADTmin = AADT (vehicles per day) on the minor road 

 Overdispersion parameter = 0.39 

 

After propagating the urban models’ errors through the SPFs and Empirical Bayes formula 

as described in Section 4.1.3, it was found that the errors associated with the AADT 

estimates were significantly reduced through the inclusion of overdispersion parameters 

and historical crash data.  The maximum errors from the AADT model validation translated 

into errors ranging from overestimating by 49% to underestimating by 53%.  The 

maximum errors associated with the predicted crashes were significantly lower than the 

maximum errors associated with AADT estimates which lead to the conclusion that crashes 

at urban intersections are not overly sensitive to changes in AADT on the minor roads.  A 

similar trend was seen when the average errors were propagated through the crash 

prediction equations.  They translated to an average range of overestimating crashes by 

37% to underestimating by 15%.   Therefore the impact of the errors from the AADT 
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estimations was reduced meaning the AADT estimates can be used as a tool to prioritize 

intersections for safety countermeasure implementation.  

 

The urban intersection analysis showed less sensitivity to model error than did the rural 

intersection analysis, due to calibration and overdispersion parameters in the urban SPFs 

which place less weight on local road AADT.   
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CHAPTER 5: CONCLUSION 

 

5.1 FINDINGS 

 

A literature review was conducted resulting in the development of multiple AADT models 

for the estimation of local road AADTs in Kentucky. In the selected AADT models, two 

sets (urban and rural) of three regression-based models to estimate AADT across three 

regions in Kentucky including the West (highway districts 1, 2, 3 and 4), North Central 

(highway districts 5, 6, and 7), and East (highway districts 8, 9, 10, 11, and 12). The models 

were calibrated using generalized linear regression with a Poisson distribution and log link 

function. Each model contained three variables including probe counts, residential vehicle 

registrations, and roadway curvature. Probe counts were acquired from the HERE 

corporation, which tracked vehicle movements through its proprietary data. KYTC 

provided residential vehicle registration information obtained through its AVIS database. 

Curvature variables were calculated based on road segment geometry. 

 

The data was combined and analyzed to estimate AADT for local roads in Kentucky. 

KYTC provided DVMT estimates on local roads in Kentucky to assist in further refinement 

of the model. A DVMT ratio (KYTC DVMT estimate to the model’s estimated DVMT) 

led to the development of an adjustment factor, which was applied to corresponding road 

segments. The adjustment factor increased model performance by reducing MAPE and 

maximum percent errors.  

 

The models’ AADT estimates were subsequently analyzed model estimates using a 

sensitivity analysis to understand how AADT error adjustments may impact safety 

countermeasure selection. The sensitivity analysis showed that intersection crash 

predictions were dominated by historical crash data, thereby reducing the impact from 

AADT estimate errors. Local intersections experiencing average- to above-average crash 

rates would be ideally suited for this model since historical crash data is used in conjunction 

with SPF crash estimates. Intersection locations with minimal crash rates may 

underestimate crashes and should be used prudently. Nevertheless, the estimates still 

provide a reasonable basis for estimating intersection crashes absent this information. In 

summary, the AADT model provides KYTC with a tool to better approximate local 

intersection AADTs and subsequently prioritize those intersections warranting closer 

examination for crash estimates.  

 

5.2 RECOMMENDATIONS 

 

The HERE-AVIS non-linear regression model demonstrated a reasonable basis for 

estimating local road AADTs in the absence of known traffic counts. Still, the model may 

be improved further with additional data sources as explanatory variables. The 911 model 

initially displayed the greatest potential in estimating AADTs but data constraints 

prevented its development at the statewide level. AVIS vehicle registration addresses 

served as a proxy for commercial and residential properties in lieu of the 911 database. 

However, vehicle registration addresses do not fully incorporate all commercial and 
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residential properties in Kentucky. Further refinements to the model should be made if 911 

datasets become available in the future for Kentucky counties.   

 

HERE probe counts represent an emerging method in determining traffic volumes but may 

presently lack satisfactory vehicular or area coverage. For example, rural areas in Kentucky 

sometimes experience gaps in cell phone tower coverage further diminishing the ability to 

track vehicles. Continued advances in GPS technologies and increased adoption of those 

devices by the public should provide additional opportunities to estimate AADTs. 

Moreover, cellular coverage should continue its expansion across the U.S. and increased 

coverage across rural regions should enhance tracking capabilities. However, HERE 

recently discontinued the option to provide vehicle counts in probe count datasets they 

offer commercially. Rather, HERE will focus solely on selling datasets containing vehicle 

speeds and associated confidence intervals. This means that any future model iterations can 

no longer rely on probe counts as an explanatory variable, potentially impacting model 

estimates. A new model approach would be required. One such approach might involve 

disaggregating the Statewide Transportation Model into smaller analysis zones. Then, trip 

generation rates could be applied to each zone to develop a zone-by-zone trip estimate. 

This approach would substitute HERE probe counts with generated trips.   

 

The HERE-AVIS non-linear regression model provides empirically based AADT 

estimates and should not be used as a substitute for actual AADTs acquired from traffic 

counts. Rather, these estimates provide initial insights into intersections potentially 

requiring safety improvements. It is recommended that actual traffic counts occur on 

approaches at selected intersections prior to implementing safety countermeasures.  In 

some instances, preexisting regional models developed for urban areas in Kentucky may 

be more appropriate for estimating AADT on local, urban roadways because they have 

been calibrated for better defined regions of the state.  AADT estimates from these urban 

regional models should be used alongside or in place of the estimates discussed in this 

report to ensure greater accuracy. Furthermore, future AADT models could follow the 911 

model (Appendix D) should statewide data become available. 
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APPENDIX A: BROWARD COUNTY MODEL 

 

A wide range of transportation data was collected across six Kentucky counties to develop 

the Broward County model. They initially selected counties include Boyd, Clark, Franklin, 

Green, Henry, and Meade Counties due to data availability (see figure Q). Data collection 

occurred prior to and in conjunction with model development activities as data input 

requirements were identified for the model development process. The data collection 

process involved coordination among various state and county transportation officials in 

the selected counties. KYTC, as well as select county offices, supplied the data. Select data 

sets were then used to populate and determine the AADT model variable requirements, 

whereas others served as validation sets to compare estimated AADTs with known 

AADTs.  

 

 
Figure Q: AADT Test Counties 

 

Initially, this model was developed based upon the Zhao and Chung AADT model 

developed at the Lehman Center for Transportation Research, Florida International 

University (Error! Bookmark not defined.). This model estimated AADTs based upon 

rdinary linear regression analysis. This model included the following regression variables: 

functional classification, number of lanes, direct access to an expressway, employment 

buffer, population buffer, distance to population center, and accessibility to regional 

employment centers. However, the characteristics of Florida’s transportation network 

differ from Kentucky’s transportation network and the model needed to be adjusted 

accordingly. Therefore, the Zhao and Chung model was modified to better fit the 

characteristics found within Kentucky. A description of this process, including variables, 

are discussed further below:   

 

Functional Classification: The functional classification (FCLASS) describes a roadway’s 

intended purpose and inherent characteristics within the transportation network. This 

variable assigns numerical values to roads across the following categories: urban principal 

arterial, urban minor arterial, urban collectors, and unclassified roads. However, these 

categories confront limitations in their relevance and usefulness when applied to the 
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Kentucky AADT model. The majority of local roads within Kentucky are rural and low-

volume in nature and do not fall into any one of these select categories. Therefore, this 

variable was excluded in the proposed Kentucky AADT model due to the lack of variation 

among the local roads in Kentucky with respect to functional classification. Furthermore, 

roadway traffic volume is one of the factors used to determine a roadway’s functional 

classification. Since this model intended to estimate traffic volumes, the use of functional 

classification was not mutually exclusive from the output of the model and may have 

negatively impacted the estimated AADTs.      

 

Number of Lanes: The number of lanes (LANES) variable measures the number of roadway 

travel lanes in both directions along a given segment of roadway. This variable has a strong 

correlation to AADT due to its direct impact on roadway capacity, or how many vehicles 

a roadway is designed to accommodate over time. The model contained all types of roads—

not just local—and subsequently represented a wide range of travel lanes. All types of 

roads were used for development of the model, but the output focus to only estimating local 

road AADTs. During this data collection phase, it was determined that only 25 percent of 

the roads located in the sample county data had a known number of lanes. Local roads 

frequently received less travel and were duly classified as unlisted. Many of these same 

roads also typically had two lanes or one lane carrying traffic in both directions as shown 

through aerial inspection methods, such as ArcMap. Therefore, all roads lacking this 

information were assigned a value of two lanes, which was exceedingly common for this 

data. 

 

Direct Access to an Expressway: Any road connected to an expressway through the use of 

adjoining entrance and exit ramps is considered to have direct access. The model labeled 

this variable as “direct access to an expressway” (DIRECTAC). Expressways—also known 

as interstates or freeways—represent limited access, high-volume major roadways and 

serve as common use connectors between large population and employment centers. To 

this extent, expressways typically have higher AADT values than most other categories of 

roads. It stands to reason that nearby roads with direct access to these expressways will 

similarly have higher AADTs. The model accounted for increased AADTs due to their 

abundance of expressways. On the other hand, Kentucky has fewer expressways than 

Florida so the variable was modified to capture any potential roadway lying within a 

defined buffer distance from an expressway access point. The assumption being, in these 

instances, that readily available expressway access for nearby roads would result in 

increased AADTs along these same roads. In Figure R below, an expressway direct access 

buffer zone is shown for Interstate 64 in Franklin County. By extension, all roads contained 

within the red circle were designated as meeting direct access to expressway requirements.   
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Figure R: Direct Access to Expressway Radius, Franklin County 

 

The DIRECTAC variable was categorized as a binary variable. In other words, roads with 

direct access to an expressway were given a value of one while all other roads received a 

value of zero. The geospatial capabilities of ArcGIS were used to identify all roadways 

meeting these direct access criteria. First, shapefiles containing all roads in Kentucky were 

obtained from the KYTC and opened with ArcGIS. Next, a data table was generated for 

determining direct access to an expressway and assigned all Kentucky roads an initial value 

of zero. Expressways were then assigned to display in green and other roads as blue within 

the map. Buffer zones with radii of approximately 0.5 miles around each expressway access 

point were placed. Finally, all roads within these buffer zones received a newly assigned 

value of one in the previously generated data table and were subsequently identified as 

having direct access to an expressway.    

 

Employment Buffer: The employment buffer (EMPBUFF) variable captured the 

distribution of people employed along a given roadway. An increase in this variable reflects 

strong employment for that roadway segment and attracts an increased number of travel 

destinations. Consequently, roads with higher employment buffers should similarly display 

higher AADTs. The model generated employment buffer variables at a given location 

based upon both the roadway’s functional classification as well as its location. The 

Kentucky model did not incorporate the use of functional classification into its regression 

equations so buffers were instead based on a road’s rural or urban classification. This 

classification process sought to prevent the overlapping of buffers and avoid assigning the 

same employees to more than one road. This methodology generated urban roads with 

smaller buffer distances due to their close proximity to one another while rural roads often 

maintained larger buffer distances between each other (31).

 

KYTC provided employment data contained in the form of TAZ files for use in calculating 

the employment buffer. This data relied upon results found from the U.S. Census Bureau 

2010 census. A TAZ, or Traffic Analysis Zone, is a small land unit area shown on a 

transportation map with a defined geographical boundary and used for the purpose of 

collecting and analyzing data. These units usually aggregate multiple census blocks and 
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typically contain less than 3,000 people. Essentially, a traffic analysis zone serves to break 

down a large transportation network map into smaller, more manageable study areas. In 

most cases, the boundaries for a TAZ will lie upon existing topographical or roadway 

boundaries such as along rivers or major highways. In Figure S, each TAZ boundary is 

shown in red for Boyd County and its surrounding areas. Each county normally contains 

many traffic analysis zones within its boundaries.  

 

 
Figure S: KYTC Statewide Transportation Model, Boyd County TAZ Boundaries 

 

Using ArcMap, the file containing all road was opened and midpoints were calculated 

along each roadway. Next, the entire roadway was assigned to a single TAZ based upon 

which TAZ contained the determined midpoint location. Each TAZ was further classified 

as either rural or urban and each assigned roadway was thereby given its respective TAZ’s 

urban or rural designation. Buffer distances of 400 feet and 0.25 miles were established for 

urban and rural roads, respectively, and visual inspections performed to prevent areas with 

overlapping boundaries. The employment buffer was then calculated as shown in the 

equation below:        

 

𝐸𝑀𝑃𝐵𝑈𝐹𝐹𝐸𝑅𝑖 = 𝑇𝐴𝑍 𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡 ∗
𝑅𝑜𝑎𝑑𝐵𝑢𝑓𝑓𝑒𝑟𝐴𝑟𝑒𝑎𝑖

𝑇𝑜𝑡𝑎𝑙 𝑇𝐴𝑍 𝐴𝑟𝑒𝑎
    

   

The weighted average method assigned every employee to a single roadway while 

preventing potential omissions or double-counting. 

 

Population Buffer: The population buffer (POPBUFF) measured the population assigned 

to a given roadway. It followed the same methodology for calculation as the employment 

buffer described previously. Roads with a high population density were presumed to 

experience higher AADTs due to their ability to increase potential trip generations as 

measured by origins. Population buffers were assigned distances of 400 feet and 0.25 miles 

for urban and rural roads, respectively. The population buffer equation is shown below:  
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𝑃𝑂𝑃𝐵𝑈𝐹𝐹𝐸𝑅𝑖 = 𝑇𝐴𝑍 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗
𝑅𝑜𝑎𝑑𝐵𝑢𝑓𝑓𝑒𝑟𝐴𝑟𝑒𝑎𝑖

𝑇𝑜𝑡𝑎𝑙 𝑇𝐴𝑍 𝐴𝑟𝑒𝑎
      

       

Distance to Population Center: The distance to the population center (DPOPCNTR) 

measured the travel times from the centroid for an individual TAZ to the centroids of other 

TAZs located in Kentucky. This variable considered each TAZ to be a population center. 

The KYTC maintains a travel time matrix that provides travel times between the centroids 

of every TAZ in the state. Using this approach, the defined centroid for each TAZ was used 

as the spatial location of assignment for all roads within that TAZ and successively 

calculated travel times between that select centroid and the centroid locations for all TAZs 

across the state. This streamlined the calculation process by eliminating the need for 

calculations between every roadway midpoint within the study area and all TAZ centroids 

located across the state. This resulted in every roadway located within a select TAZ having 

the same value for DPOPCNTR. However, most TAZs contained a minimal number of 

roads (typically less than 25) so this proxy approach remained viable. 

 

Regional Employment Access: The regional employment access (REACCESS) variable 

accounted for trip distance and total employment at a given destination. The calculation 

for determining this variable is seen below:  

 

𝑅𝐸𝐴𝐶𝐶𝐸𝑆𝑆𝑘 = ∑ 𝐸𝑗 ∗ 𝑒−0.0954∗𝑡𝑘𝑗

𝑁𝐸

𝑗=1

 

 

Where  

 j is the TAZ centroid; 

 k is the TAZ that REACCESS is being calculated for 

 NE is the total number of TAZs 

 Ej is the total employment of TAZ j  

 tkj is the time from TAZ k to TAZ j 

 

This model considered every TAZ to be a regional employment center. Similar to the 

DPOPCNTR variable, this methodology determined travel times between centroids for 

every respective TAZ within the state. In this equation, employment centers with 

increased levels of employment coupled with short distances to roadways created a larger 

trip distribution attraction and resulted in larger REACCESS values for those nearby 

roadways. Finally, a query within Microsoft Access calculated REACCESS for every 

single TAZ within Kentucky to produce the variables of interest.   

 

Based upon these variables, a Kentucky model was developed using five of the original 

Zhao and Chung model variables including: direct access to an expressway, employment 

buffer, population buffer, distance to population center, and accessibility to regional 

employment centers. The model drew upon obtained data from Boyd, Clark, Franklin, 

Green, and Henry counties. The final regression equation used in this model was:   
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AADT = 357.23*DIRECTAC + 0.02*REACCESS – 0.63*POPBUFFER – 

0.05*EMPBUFFER + 0.09*DISPOPCNTR  

 

Using this regression equation, data were plotted to compare actual AADTs collected from 

local traffic authorities to the estimated AADTs from the model. The results of this plot are 

shown in Figure T. 

 

 
Figure T: Broward County Model; Boyd, Clark, Franklin, Green, and 

Henry Counties 

In general, the estimative attributes of this model were limited. The large variation of data 

scattered across the plot indicated excessive errors associated with this model. The errors 

represented the deviations between AADTs the model estimated for a local roadway and 

the actual AADTs known to occur based upon previously collected traffic counts. Each 

distinctly colored line represents a different magnitude of error from the “true” value 

represented by the black line within the middle portion of the graph. A 100 percent accurate 

model would display all estimated data points along the black line so that the estimated 

AADT would entirely match the actual AADT at any given traffic volume. Intuitively, no 

model can achieve this degree of precision so the key is to optimize the model to the highest 

performance possible. Following this framework, the red lines form an upper and lower 

boundary showing a 100 percent error deviation between the estimated value and the actual 

value. Correspondingly, an estimated AADT placed along the upper redline would be 

exactly twice the value of the actual AADT. For example, an actual AADT of 600 intersects 

the upper redline at an estimated AADT of 1200. In this context, errors provided a window 

into the accuracy of the model to perform as intended and provide valid results. The 

Broward County model graph remained limited in this regard due to the wide variation of 

data spread across multiple error ranges (e.g., 100%, 200%, 300%).  
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The results of this model’s regression function can be partly explained through the use of 

the Broward County model itself. The state of Florida possesses unique transportation 

attributes in relation to Kentucky. In particular, the majority of Florida’s local roadways 

are urban in nature. This contrasts with Kentucky’s local roadways which tend to be rural 

and occupied by lower traffic volumes. Due to these initial results and seemingly limited 

applicability, it was decided to exclude the use of this particular model going forward. The 

errors associated with this model and their descriptions are shown in Table 11. 

 

Table 11: Broward County Model Errors  

Measure of Effectiveness Broward County Model 

MAPE (%) 125 

Average Absolute Error  417 

Maximum Positive Error (%) 833 

Maximum Negative Error (%) -66 
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APPENDIX B: BROWARD COUNTY WITH PVA MODEL 

 

This model version built upon select variables contained within the Zhao and Chung 

Broward County model described in Appendix A and sought to enhance it by incorporating 

property valuation administrator (PVA) data into the analysis. The most relevant variables 

from the previously discussed Broward County model were extracted for use in this 

enhanced model. The variables selected for inclusion were REACCESS, DISPOPCNTR, 

POPBUFFER, and EMPBUFFER. To this extent, the variables DIRECTAC and LANES 

were subsequently removed for use in this model due to lack of statistical significance. 

Each of these two variables displayed little variation between different roadways within 

the model thereby limiting their usefulness in estimating AADTs.  

 

Next, PVA data was used as additional input into the regression model. Each county 

government within Kentucky is responsible for determining and assessing taxes on its 

residential and commercial properties. County governments perform these actions through 

their internal or PVA office. In this effort, each PVA office collects and maintains data on 

its jurisdictional properties including property owners, sizes, and addresses, among others. 

The use of PVA data was sought as a tool to determine the number and type of properties 

located along a local roadway.  

 

The number of residential and commercial properties located adjacent to local roadways is 

a determining factor for several AADT model variables such as trip generation and trip 

distribution. Two of the county governments (Franklin and Meade) were contacted 

requesting participation in this study in an effort to collect this information. The Franklin 

County PVA provided use of their address database detailing the addresses of all 

properties--both residential and commercial--known to exist along their local roads. 

Furthermore, the Meade County road department also made their 911 emergency address 

database available for use in this study. Similarly, this 911 database contained known 

addresses for every residential or commercial property residing within its county borders.    

 

This data—contained within the form of a shapefile—was merged using the route overlay 

function in ArcMap and used to form the boundaries for each assessed property or parcel 

of land in Franklin County. The Franklin County PVA classifies all of its properties into 

one of 12 distinct categories. Within these categories, four were identified as displaying 

the most utility to this model including RESIDENTIAL, COMMERCIAL, 

AGRICULTURAL, and EDUCATIONAL. Each parcel was subsequently assigned to the 

nearest roadway. The number of parcels assigned to each roadway was aggregated and 

used this information in the follow-on regression analysis. The regression equation for this 

model consisted of the following:         

 

AADT = 4622.68 -0.01*REACCESS – 0.75*DISPOPCNTR + 0.35*POPBUFFER 

– 0.92*EMPBUFFER – 0.56*RESIDENTIAL – 0.47*AGRICULTURAL + 

17.92*COMMERCIAL – 3.81*EDUCATIONAL 

 

This regression model represented incremental improvement over the previous and original 

Broward County regression model. As can be seen below, the data more closely fit the 
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intended regression function as depicted by the black line located within the middle portion 

of the graph (Figure U).  

 

 
Figure U: Broward County with PVA Model, Franklin County 

 

This model demonstrated improvement over the previous Broward County model across 

three of the four error categories. The magnitude of the errors decreased for the MAPE, 

average absolute error, and maximum positive error categories.  

 

Table 12: Broward County with PVA Model Errors 

 

Measure of Effectiveness 
Broward County with PVA 

Model 

MAPE (%) 82 

Average Absolute Error  402 

Maximum Positive Error (%) 399 

Maximum Negative Error (%) -72 

 

Nevertheless, the degree of improvement in relation to the original Broward County model 

remained limited. Errors still occurred frequently across all three ranges of errors, or at the 

100, 200, and 300 percent levels. To this extent, this model did not represent a significant 

upgrade in estimating local road AADTs in relation to the original Broward County model. 

Further study of the two remaining models was warranted. 
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APPENDIX C: ROOFTOP MODEL 

 

In the “Rooftop” model, an aerial map in ArcMAP was used to visually determine the 

number of properties through rooftop identification along local roadways. This approach 

utilized Highway Information System data to populate roadway information within 

ArcGIS. This approach was incorporated by visually identifying the number of rooftops 

adjacent to roadways on this map using Google Earth. Each rooftop was thereby assigned 

to the nearest roadway. In addition, rooftops were classified as small, medium, and large 

and categorized according to the following attributes: 

 

 SMALL – Individual Houses 

 MEDIUM – Small Apartment Complex (e.g., Single Building), Minor 

Buildings (e.g., small retail) 

 LARGE – Major Apartment Complex (e.g., Multiple Buildings), Major 

Buildings (e.g., large retail), Industrial Complex or Facility 

 

Next, a connectivity rating was established for roads within this “Rooftop” model by rating 

roads from one to six based on their connectivity to other roads. The ranking system ranged 

from a low rank assigned to dead end roads to the highest rank corresponding with urban 

roads in a grid pattern. Visual inspection in ArcMap delineated the existence of dead end 

roads. Mid-range rankings typically included the existence of minor collectors or major 

through roads. It was possible to distinguish through roads and urban grid roads based on 

the functional classifications found within the KYTC “All Roads” shapefile. The purpose 

of the connectivity rating was to provide a variable that would account for the presence of 

traffic on roadways that may not have any adjacent properties, thereby allowing the 

regression model to have an intercept of zero. 

 

The connectivity rating was used in conjunction with the three rooftop count variables to 

run a regression for Meade County. The regression equation for this model was: 

 

AADT = 113.8*CONNECTIVITY + 2.1*SMALL + 49.3*MEDIUM + 

138.8*LARGE 

 

Meade County data was used for this model in order to compare the results from this 

regression analysis with that of the 911 model detailed in Appendix D. The 911 model only 

used data from Meade County since 911 data had not been obtained from other Kentucky 

counties. In general, the results from this model estimated higher than expected AADTs 

for low-volume, local roads in comparison with actual traffic counts and lower than 

expected AADTs for high-volume, local roads. The approximate range at which the 

regression model moved from overestimating to underestimating actual AADTs occurred 

around the 700 count threshold for the actual AADT. A graphic depicting the results from 

this linear regression model is shown in Figure V.   
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Figure V: Rooftop Model, Meade County 

  

The Rooftop model produced an increase in errors when compared to the previous Florida 

with PVA model and therefore, did not improve upon the previous model. Furthermore, 

this model represented the most time intensive methodology of the studied models. Due to 

these reasons, it was decided to exclude this model for further analysis. The errors 

associated with this model were as follows: 

 

Table 13: Rooftop Model Errors 

 

Measure of Effectiveness Rooftop Model 

MAPE (%) 93 

Absolute Error (AADT) 332 

Maximum Positive Error (%) 494 

Maximum Negative Error (%) -60 
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APPENDIX D: 911 MODEL 

 

The “911” model version utilized a similar approach to the PVA version by determining 

residential and commercial property types through the use of 911 data. In this approach, 

coordination with the Meade County Planning and Zoning Office was necessary for use of 

their 911 database. This database contains listings of all known residential and commercial 

properties within the county. Meade County provided this data in the form of a shapefile, 

which can be used in ArcMap. This data was merged with the KYTC Highway Information 

System (HIS) database. The HIS database is a KYTC maintained system containing the 

elements of the roadway network such as roadway types, locations, and other attributes 

across the state of Kentucky. The merging of this data allowed for the location of each 911 

address and provided the ability to determine its proximity to nearby roadways. Properties 

were subsequently assigned to the nearest roadway. Finally, the total number of properties 

assigned to each roadway were aggregated and used in the follow-on regression analysis. 

The regression equation for this model was:  

 

AADT = 565.93 + 6.99*RESIDENTIAL+ 6.73*COMMERCIAL 

 

However, this formula produced 565 vehicles per day on a road with no residential or 

commercial properties alongside. Consequently, the regression was modified to force the 

intercept to zero. The formula for this equation was as follows: 

 

AADT = 43.5*RESIDENTIAL+ 16.4*COMMERCIAL 

 

However, forcing the model to go through zero does not allow for accurate estimations of 

through trips.  Therefore, an intercept greater than zero, but less than the number estimated 

by the regression may be more appropriate. 

 

In this model, estimated AADTs tended to underestimate actual AADTs across much of 

the traffic volume range from low to high traffic counts. The model results are shown 

graphically in Figure W. 

 

 
   Figure W: 911 Model, Meade County 
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The errors contained within this model are shown in the table below. 

 

Table 14: 911 Model Errors 

 

Measure of Effectiveness 911 Model 

MAPE (%) 61 

Absolute Error (AADT) 352 

Maximum Positive Error (%) 190 

Maximum Negative Error (%) -100 

 

On average, the 911 model provided the best combination of results across the aggregated 

error categories. It contained the lowest error values among all the models for the Mean 

Absolute Percent Error (MAPE) and the Maximum Error as well as the second lowest 

Absolute Error value. It happened to contain the highest minimum error value but this did 

not differ significantly from the other model minimum error values.  Aggregating the 

overall errors, the 911 model was identified as the overall best performing model thus 

warranting additional research efforts. However, it was later discovered that this data was 

not accessible at the statewide level and therefore, this model was excluded for further 

analysis.  
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APPENDIX E:  AVIS-HERE MODEL, ORDINARY LINEAR REGRESSION 

 

The AVIS-HERE ordinary linear regression (OLR) model used two variables, probe counts 

(HERE) and residential vehicle registrations (AVIS). This model preceded the generalized 

linear model developed in the selected AVIS-HERE non-linear regression model. This 

model spatially represented the entire state as one closed system, instead of the subsequent 

three regional models later developed. The road segments used in data calibration and 

validation included rural, two lane roads with known traffic counts and functionally 

classified as local. An upper AADT boundary of 1000 was imposed on the dataset. 75 

percent of the segments that met the criteria were randomly selected to calibrate the model, 

and the remaining 25 percent were used to validate the model.  

 

The ordinary linear regression was performed in Excel and the following model resulted: 

 

𝐴𝐴𝐷𝑇 = 168.32 + 2.06 ∗ 𝑃𝑟𝑜𝑏𝑒 + 1.04 ∗ 𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 
 

The calibrated constant inferred that the model will not estimate a road AADT less than 

168. This assumption introduced bias into the model’s estimative capability. Figure X 

illustrates a plot of the actual AADT versus the model’s estimated AADT. The graph’s 45° 

line represents the ideal case where model AADT estimates equal actual AADTs. The 

graph demonstrates the model overestimated AADT in the low range and underestimated 

AADT in the high ranges.  

 

 
Figure X: Actual versus Model AADT 

 

Table 15 summarizes errors associated with the AVIS-HERE OLR model. The mean 

absolute error was the lowest value amongst the derived models, but the MAPE and 

maximum percent errors were among the highest. The high percent errors caused the 

MAPE to be higher than anticipated. Road segments with low AADTs were the segments 

with the highest percent error. In one example, a road had a known AADT of 6, yet the 
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model is estimated 168 based on the calibrated constant. This, in turn, created high errors. 

Another method warranting additional investigation would be establishing a lower AADT 

boundary on the calibration dataset and requiring exclusion for very low AADT road 

segments. 

Table 15: OLR Model Errors 

Measure of Effectiveness OLR Model 

N (sample size) 401 

Mean Absolute Error 153 

St. Dev. Absolute Error 124 

MAPE (%) 192 

Max % Error 5359 

Min % Error -78 

 

Table 16 summarizes errors for all studied models. On average, the 911 model provided 

the best combination of results across the aggregated error categories.  It contained the 

lowest Mean Absolute Percent Error (MAPE) and Maximum Error values for all models 

and the third lowest Absolute Error value.  Its minimum error value exceeded other models 

but not significantly. Aggregating the overall errors, the 911 model was identified as the 

overall best performing model. However, the 911 data used to develop this model was not 

readily available statewide. Therefore, the AVIS-HERE model was selected because it 

demonstrated the best overall combination of performance and data availability due to its 

low average absolute error.  

 

Table 16: Summary of Model Errors 

Measure of Effectiveness Florida 
Florida           

with PVA 
Rooftop 911 

AVIS-

HERE 

OLR 

MAPE (%) 125 82 93 61 192 

Absolute Error (AADT) 417 402 332 352 153 

Maximum Positive Error 

(%) 

833 399 494 190 5359 

Maximum Negative Error 

(%) 

-66 -72 -60 -100 -78 
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